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determined. The derived computational results indicate that a

heuristic approach is computationally efficient, although only a

suboptimal solution is achieved.




ABSTRACT
RAWLICK, STEVEN JOHN. Production Scheduling of Sequenced Tapes for

\ Printed Circuit Pack Assembly. (Under the direction of Yahya Fathi.)

- °* A sequencing machine, or simply, a sequencer, is a piece of
equipment used in the electronic assembly industry to produce sequenced
reel-packaged tapes of axial leaded components for different types of
Printed Circuit Packs (PCPs). Due to the limited number of dispensing
heads available on sequencers, the relatively large number of component
types competing for these heads, and the diversity of the component
type requirements of different types of PCPs, efficient scheduling of
these machines is usually not a simple task.

( Fathi and Taheri [1986] developed a mathematical model pertaining
to one variation of the sequenced tape production scheduling problem.
They employ a strategy aimed at providing an optimal solution by
totally eliminating all change-over time between consecutive runs on
the available sequencers. Their dinteger programming model is
discussed, and the performance of their model is examined. Test
results provide evidence that the particular variation of the sequenced

tape production scheduling problem which they confront is intractable

A heuristic approach to solve another variation of the sequenced
tape production scheduling problem is presented. Three different
heuristic procedures employing a specific solution strategy are

developed. The algorithm followed by the three heuristic procedures is

described, and the relative merits of three procedures are empirically
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CHAPTER 1
INTRODUCTION

The electronic assembly industry, as with most technical
industries, is ynquestionab]y devoted to computerized, vastly efficient
production operations. A particular production item in huge demand is
a Printed Circuit Pack (PCP). Broadly speaking, a PCP is assembled via
an automated system that inserts components into a Printed Circuit
Board (PCB). The components themselves are pre-packaged in a specific
sequence on a Jlarge reel of tape which successively feeds the
components to the PCB (which, in reality, is a blank PCP). The
resulting product of this computer-controlled insertion process is the
completed Printed Circuit Pack.

Printed Circuit Packs are distinguishable from each other by their
component composition. PCPs differ in the types, and the number of
each type of component required for their production. Consequently, in
order to assemble a particular PCP, a specifically sequenced
reel-packaged tape containing all of the components required to produce
that PCP must be prepared in advance. However, components initially
are reel-packaged by type only. In other words, each reel contains
a large number of identical components. Given the task of producing a
sequenced reel-packaged tape, then, the requisite components must be
detached from the various component tapes on hand and spliced in a
specific sequence onto one blank receiving tape.

This detachment/splicing operation is commonly referred to in the

electronic assembly industry as sequencing and packaging. A condensed




2
description of a sequencing/packaging operation and PCP production
process is extracted from a technical report by Fathi and Taheri

(1986, p. 3]:

A Variable Center Distance automatic insertion machine
(veD) is a piece of equipment used in the electronic assembly
industry fo insert axial leaded components into Printed
Circuit Boards (PCBs) to produce Printed Circuit Packs
(PCPs). Sequenced and reel-packaged components are loaded
onto a VCD, as input material, while a numerically controlled
pattern program directs the operation of insertion of these
components into the PCB. Therefore, for each type of PCP,
the proper set of components must be sequenced according to
the requirements of the pattern program and packaged on tapes
(reel-packaged) prior to their use on a VCD. Typically, this
operation (sequencing and packaging) 1is performed on a
machine known as a Sequencing Machine, or simply, a
Sequencer.

A PCP assembly plant typically has several such
sequencers, each of which represents a substantial
investment. Efficient scheduling of these sequencers is a
common concern of the management from both the viewpoint of
equipment utilization and that of the throughput of the
insertion process. Because of the combinatorial nature of
the problems, efficient scheduling of the sequencers is not a
simpie task.

The problem alluded to above 1is known as a sequenced tape
production scheduling problem. This problem has several variations
directly attributable to factors such as the number and type of PCPs to
be produced, and the resources available to produce them. The thrust
of this paper encompasses two distinct, yet related variations. The
first variation discussed 1is termed a sequencer assignment problem,
which is addressed by Fathi and Taheri in their report. Basically, a
sequencer assignment problem represents a situation in which sequencing
and packaging resources are, in a sense, unconstrained. The issue is

solving the problem so as to optimally utilize as few of the available

resources as possible. Fathi and Taheri present a mathematical
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programming model that can be used to resolve some of the difficulties
involved when dealing with a sequencer assignment problem.

In this thesis, an effort is made to examine that mathematical
model and its performance, but the bulk of the research was influenced
by their closing remarks concerning a related problem. This variation
is termed a sequencer scheduling/assignment problem, which represents a
situation where sequencing and packaging resources are, in fact,
constrained. The reader will note that the nomenclature of the two
variations is similar in that they both contain the words 'sequencer
assignment problem', and they differ only by the exclusion/inclusion of
the word 'scheduling’'. By extension, it is fair to assume that these
two problems are different because the 'scheduling' of something (yet
to be explained) is not important in the first, but is critical in the
second. Permit us to digress at this point to generally characterize
the 'sequencer assignment problem' and illustrate why 'scheduling' is
disregarded in one case, yet essential in the other.

Consider an environment where one sequencer is available. This
sequencer is equipped with a fixed number of dispensing heads. Reels
of components are mounted on these dispensing heads so that individual
components may be detached onto a blank tape to produce a sequenced
reel-packaged tape, or sequenced tape. The different component types
required to produce a single PCP, or pack type, are known in advance.
Therefore, the requisite component tapes are mounted onto various

sequencer dispensing heads so that the sequenced tape corresponding to

the particular pack type may be produced.
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This sequencing and packaging operation seems straightforward.
However, the environment becomes congested when different pack types
need to be produced. The possibility exists that the total number of
component types needed to produce all of the different pack types
exceeds the fixed number of sequencer dispensing heads currently
available. If.this situation occurs, it is inevitable that at some
point during the sequenced tape production process, the sequencing
machine will have to halt so that the necessary, unmounted component
tapes may be loaded, causing unneeded component tapes to be removed.
Once this change-over operation is completed, the sequencing and
packaging operation resumes. The only alternative to this situation is
to purchase extra dispensing heads to affix to the sequencer in order
to accommodate all of the different component tapes. Given this
alternative, which requires a favorabie decision at management level,
the sequencer again would be capable of producing all of its assigned
s-quenced tapes without halting.

Halting the sequencer during the production process of the
sequenced tapes is the key issue. If the sequencer can produce all of
its assigned sequenced tapes without change-overs, then the only
set-up task is to load the appropriate component tapes onto the
dispensing heads prior to production start-up. This situation,
accurately portrayed as the sequencer assignment problem, does not
require a sequenced tape production schedule. In other words, the
order of production of the different types of sequenced tapes,
corresponding to the difterent pack types, does not affect their total

production time. This is true, because under the assumption that no

B2 5 5 3
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change-overs will occur, there will be no set-up time between
production of consecutive types of sequenced tapes. It follows that
all schedules (orders of production) result in the same total
production time, hence are equally good.

This, however, is certainly not the case when the sequencer cannot
produce all of its assigned sequenced tapes without halting. It may be
cost effective for management to tolerate this situation depending on
the duration of the sequencer halts, and the costs incurred to purchase
extra dispensing heads. Naturally, the sequenced tapes must be
assigned to the sequencer for production, but the order of production
of the sequenced tapes is now vitally important. The logic behind this
stems from the fact that some pack types may have more in common with
others in terms of component composition. A judicious production
schedule might group common pack types together. By establishing this
sort of relationship, ideally then, the sequencer would produce as many
sequenced tapes as possible before halting to take on other needed
component tapes. The production schedule also dictates which specific
component tapes must be loaded onto the dispensing heads, and when they
are to be loaded. This situation is fittingly portrayed as the
sequencer scheduling/assignment problem. It is reasonable to assume
that shrewd scheduling might result in shorter, and possibly fewer
sequencer halts. This thought process is very much in line with
industry's desire to maintain vastly efficient production operations.

The sequencer scheduling/assignment problem referred to in the
closing remarks by Fathi and Taheri is a much more complex problem than

the sequencer assignment problem, which they treat in great detail.
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The subject matter of this thesis is inspired directly from their
technical report. The goals of this research are twofold:

1) Test their mathematical model of the sequencer assignment
problem to develop an insight into its performance in a typical problem
environment. A test phase would hopefully enable conclusions to be
drawn concerning the model's efficiency and possibly detect particular
aspects inherent in the model that might lead to other areas of
research.

2) Study the more realistic sequencer scheduling/assignment
problem, which would be created by management's decision not to
purchase additional dispensing heads, but instead, to tolerate a
certain amount of change-over time between consecutive runs on the
sequencer. This problem, spurred by a managerial attitude of, in
effect, ‘Work with the resources currently available and prepare the
corresponding sequenced tapes in accordance with the specified pack
type requirements', necessitates a mathematical model altogether
different from the Fathi/Taheri model.

Due to the nature of the results derived during the test phase of
the Fathi/Taheri model, it became readily apparent that the two
aforementioned goals actually lead to one and the same objective, which
constitutes the basis for this research. This objective is the
determination of a production schedule of sequenced tapes that
minimizes the total change-over time between consecutive runs on the
sequencers for a given set of pack types and their associated volume

requirements. An implied task in this study is to ensure that the
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distribution of total workload among the available sequencers is
relatively even throughout the sequenced tape production process.

As alluded to earlier, the technical report presented by Fathi and
Taheri is the cornerstone of this study. In their report, they offer a
very condensed: description of the operations performed by Variable
Center Distance automatic insertion machines (VCDs), and the operations
performed by sequencing machines. The thrust of their report centers
on the sequencer assignment problem, and the mathematical programming
model developed to provide a solution for that problem.

VCD operations are very complex in nature, and are the subject of
intense scrutiny in the electronic assembly industry. In a working
paper by Saboo et al. [1986], electronic assembly operations with
respect to Printed Circuit Boards are discussed, and a detailed
explanation of VCD operations is provided. The operation of sequencers
is an integral portion of the overall PCP assembly process, and as
such, requires intense scrutiny as well. For a description of the
sequencer operations, see the Sequencer User's Manual, by Universal
Instruments Corporation [1986].

The mathematical programming model developed by Fathi and Taheri
is a type of model frequently used for problem solving and decision
making in production systems. One category of mathematical programming

model is known as linear programming. For a review of linear

programming, see 0zan [1986] or Murty [1983].
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An Integer Programming model is a Linear Programming model with an
extra requirement that some (or all) of its variables must be integer
valued. The model designed by Fathi and Taheri 1is an integer
programming model. Salkin [1975] discusses integer programming in
detail, and describes various techniques utilized to formulate and
solve such problems.

Chapter 2 defines the sequencer assignment problem and discusses
the strategy supporting the mathematical model presented by Fathi and
Taheri. The reader is permitted an insight into the model's
performance when tested wusing several sets of typical problem
parameters. The necessity of an alternative approach is demonstrated.
Chapter 3 discusses the strategy employed to confront the sequencer
scheduling/assignment problem. Some measures of goodness by which
different heuristic procedures may be compared with each other are
described. In Chapter 4, the assumptions used in developing a specific
heuristic approach designed to provide a solution to the sequencer
scheduling/assignment problem are discussed. This chapter also
contains the specific algorithm followed by three different heuristic
procedures. Chapter 5 describes the specific aspects of the three
heuristic procedures, and provides an example demonstrating a
particular procedure performed by the algorithm. Chapter 6 provides
computational results, and offers a comparison of the three heuristic

procedures and an interpretative discussion of the results. Avenues

for further research are presented.
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CHAPTER 2
A MATHEMATICAL MODEL FOR LOADING SEQUENCERS

2.1 Problem Background

For any Printed Circuit Pack, or pack type, to be produced, the
different component types required for that pack type must be packaged
on a reel in the proper sequence. The sequenced reel of component
types is placed on a VCD which cuts the components from the reel and
inserts them into a Printed Circuit Board. The insertion process is
controlled by a pattern program. Therefore, for every pack type that
must be produced on a VCD, a sequenced tape of required component types
must be previously prepared by a sequencer. The component types that
make up the packaged reel are inserted onto the tape in a specific
reverse sequenced order, again controlled by a pattern program, so that
they will be later inserted into the board correctly by the VCD.

Before delving into the mathematical programming model developed
by Fathi and Taheri treating the sequencer assignment problem, it is
essential to thoroughly understand the operation of sequencers.
Without this understanding, it is utterly impossible to fully grasp the
problem at hand, nor is it possible to gain insight into the methods
utilized to provide a solution. Consequently, an extracted portion
from their report explains the operation of sequencers [1986, p. 4]:

A Sequencer consists of a set of dispensing heads that

cut the components from input reeis according to the bill of

materials and the insertion pattern. The dispensed

components are fed onto a conveyor chain where they are
spaced and remounted on an automatically fed tape. Figures

2.1 and 2.2 depict schematic views of a sequencer and the
sequencing operation, respectively.
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Like VCD machines, sequencers are typically run by
control programs which are written for specific Printed
Circuit Pack (PCP) designs. When developing these control
programs, the programmer needs to assume that specific
component types are available on specific dispensing heads.
Accordingly, prior to operating the sequencer, an operator
must verify that these components are actually loaded on the
appropriate dispensing heads. This may require unloading
some component tapes from the dispensing heads and loading
the required set of component tapes in their place. We refer
to the time required to perform this unloading/loading
operation as the change-over time.

As a general rule, the management usually prefers to
streamline the PCP production process by reducing the
change-over time between consecutive runs on the sequencers
(even if this requires additional capital investment). To
achieve this managerial goal, a variety of different
strategies could be employed.

They later describe a typical problem environment consisting of 3
to 6 sequencers, 20 to 40 pack types, and anywhere from 200 to 400
different component types. This sequencer assignment problem is
combinatorial in nature and can be described thusly.

Throughout the remainder of this thesis, we use the terms pack

type, pack, and sequenced tape synonymously, for all intents and

purposes. Although sequenced tapes are prepared prior to the
production of pack types, this interchangeable relationship is feasible
because a pack type and its corresponding sequenced tape require
identical component types. Therefore, when a phrase appears such as '
. a pack type must be produced, and is assigned for production to a
sequencer ., . .,' it should be <clearly understood that the

corresponding sequenced tape is actually assigned to the sequencer for

production, since sequencers produce sequenced tapes, not pack types.
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This conscious abuse of terminology facilitates the comprehension of
complex passages and serves to unclutter lengthy explanations.

Each pack type consists of a fixed number of different component
types, and each available sequencer has a fixed number of dispensing
heads available for mounting component tapes. This is an essential
piece of information. It is clearly impossible to commence production
of a sequenced tape corresponding to a specific pack type, then halt
the sequencing operation in order to load other needed component tapes
onto the sequencer. Therefore, we know that if any pack type is
assigned to a particular sequencer, then that sequencer is capable of
producing the corresponding sequenced tape without halting, since the
number of dispensing heads available for mounting component tapes is
greater than or at least equal to the number of different component
types required to produce that sequenced tape.

Of the 20 to 40 pack types to be produced, some may bear
resemblance, while others may be distinctly different. By this, it is
inferred that some pack types may require a similar set of different
component types, and/or that most of the different component types
required for production are common to each. On the contrary, some pack
types may have very few component types in common with others, and/or
the number of component types required to produce them may differ
drastically, possibly up to the maximum number of different component
types that any pack type would require.

To capsulize the sequencer 1loading situation, we assume that

within the planning horizon, a PCP assembly plant must produce 20 to 40
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pack types, none of which requires more than a fixed number of
different component types in order to be completed (for purposes of
this paper, the fixed number is set at 100). The plant has 3 to 6
sequencers available for production, and none of the sequencers have
more than 100 dispensing heads available (the identical fixed number)
to mount component tapes. The total number of different component
types needed to produce all of the pack types within the planning
horizon will not exceed 400. The ideal solution is a pack
type-to-sequencer assignment plan that permits all of the corresponding
sequenced tapes to be produced without causing any of the sequencers to
halt because one or more of the required component types are not

already mounted on that sequencer's dispensing heads.

2.2 Problem Statement

The problem facing a production supervisor then, within the
planning horizon, is to decide which pack types should be assigned to
each available sequencer. This assignment ultimately determines which
sequenced tapes will be produced by each sequencer. Recall that
management prefers to streamline the production process of the
sequenced tapes by reducing the change-over time, or number of
change-overs, between consecutive runs on the sequencers. Intruding on
this already complex situation is the requirement that the assignment
of pack types to sequencers should be such that the distribution of
work, or equivalently, total processing time, among the available
sequencers is relatively even. Total processing time of a sequencer

is measured by the total number of component insertions that the
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sequencer makes while it produces all of its assigned sequenced tapes
within the planning horizon. Management is not easily pleased!

In other words, nirvana, from management's point of view, is
characterized by a planning horizon such that once the available
sequencers are "started up, they are not turned off until all of the
sequenced tapes required to be produced are completed and the workload
(the number of component insertions that each sequencer makes to
produce the tapes) is relatively even. It is easy to envision how the
sequencer loading situation can be a production supervisor's nightmare!

Falling short of nirvana, the production supervisor is tasked to
devise a pack type-to-sequencer assignment plan that necessitates the
fewest number of change-overs between sequencer runs. Also, if
change-overs should occur, they should take as little time as possible.
Ali the while, the relatively even distribution of sequencer workload
should be maintained. A more detailed explanation of change-overs and
how they impact upon the problem solution is given in Chapter 3. They
are not an area for consideration in the model developed by Fathi and
Taheri since their model totally eliminates all change-overs.

To further amplify the situation where a change-over does not
occur, let us consider just one sequencer of those available in a
typical problem environment. Assume that this particular sequencer is
scheduled to produce 10 sequenced tapes. For this sequencer not to
experience a change-over while producing the 10 sequenced tapes, the
total number of different component types required to produce the 10

sequenced tapes may not exceed 100, which is the number of dispensing

heads on that sequencer. In other words, the cardinality of the union
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of all of the component types required to produce the 10 sequenced
tapes may not exceed 100. If it did, then at some point in time, at
least once, the sequencer would have to halt so that the required
unmounted component tape(s) could be loaded on a dispensing head(s) of
the sequencer, “in turn causing other component tape(s) to be removed.
The production process of the sequenced tapes would resume after the

component tape changes were completed.

2.3 Model Strategy

The strategy employed by Fathi and Taheri in the development of
their model is aimed at the complete elimination of all change-over
time. They succeed 1in accomplishing this goal, which is also
management's ideal goal, by permanently dedicating specific sequencer
dispensing heads to specific component types. In this manner, for
every sequenced tape that must be produced, there is at least one
sequencer which has all of the necessary dedicated heads. The caveat
attached to their model, however, is that depending on the set of input
parameters constituting any particular problem, the resulting solution
might require the acquisition of additional dispensing heads, which
management may or may not decide to purchase.

Prior to further explanation of their model, detailed
clarification as to the difference between the segquencer assignment
problem and the sequencer scheduling/assignment problem is appropriate.

In the event that management approves of purchasing additional
dispensing heads, the Fathi/Taheri model of a sequencer assignment
problem 1is perfectly suitable to determine a pack type-to-sequencer

assignment plan. There would never be cause for concern when their
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model provided a resulting solution requiring additional dispensing
heads to be purchased. Under these circumstances, a schedule that
exactly orders the production of sequenced tapes for the purposes of
reducing change-over time is not required. The Fathi/Taheri model
solution dictates that when a pack type is assigned to a sequencer for
production, a dispensing head on that sequencer has been dedicated for
every one of the different component types required to produce that
corresponding sequenced tape. Therefore, the exact order by which
different sequenced tapes are successively produced on each sequencer
is inconsequential. None of the sequencers will necessitate a
change-over regardless of the order of production of successive
sequenced tapes.

This property is a result of the construction of their model. The
model seeks a particular dispensing head-to-component type dedication,
and the corresponding pack type-to-sequencer assignment plan, such that
no change-overs are required throughout the planning horizon (except,
of course, for when a component tape exhausts its components). In
other words, the Fathi/Taheri model seeks to assign pack types to the
sequencers in a manner such that all of the different component types
required to produce each corresponding sequenced tape are mounted on at
least one of the available sequencers. The model makes no attempt to
schedule the order of production of sequenced tapes, since, as it has

been previously pointed out, a production schedule has absolutely no

effect on the degree of goodness of the solution.
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By association, then, the Fathi/Taheri model is suitable for use
in situations where the assignment of specific pack types to sequencers
for production is the primary objective of the analysis, and production
scheduling has no impact. The circumstances that propagate this
problem (the séquencer assignment problem) are, for any set of typical
problem parameters, either the case where the model solution specifying
the pack type-to-sequencer assignment plan does not require any
additional dispensing heads on any of the available sequencers, or, if
the resulting solution does indeed require extra heads to be added,
management is willing to purchase them.

Details of the sequencer scheduling/assignment problem are fully
discussed in Chapter 3. It is sufficient at this point to note that
the sequencer scheduling/assignment problem presents itself whenever
change-overs must occur during the production process of the sequenced
tapes. If change-overs are necessary during production, the pack
type-to-sequencer assignment plan and the exact order of production of
sequenced tapes impact upon the number and duration of change-overs.
Intuitively, if the pack types assigned to a sequencer are relatively
similar, and furthermore, if the order of production of the
corresponcing sequenced tapes is specified such that the different
types of components required to produce each one successively are
relatively similar, it is justifiable to expect that the number and the
duration of change-overs would be less than the case where the pack
type-to-sequencer assignment plan and the corresponding schedule (the
order of production of different sequenced tapes on a sequencer) is

determined hapzardly.
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Therefore, not only does judicious assignment of the pack types to
sequencers affect the degree of goodness of the solution, but also, the
schedule designating the exact order of production of the assigned
sequenced tapes on each sequencer has a significant impact upon the
goodness of . the solution. This more realistic sequencer
scheduling/assignment problem is a product of management's decision not
to purchase additional dispensing heads, but instead, to tolerate a
certain amount of change-over time.

Returning to the Fathi/Taheri mathematical programming model, the
strategy employed in developing their model has been previously
discussed. To facilitate further explanation, however, that strategy
is reiterated. The  model seeks a particular dispensing
head-to-component type dedication, and the corresponding pack
type-to-sequencer assignment plan, such that no change-overs are
required over the planning horizon and the total workload is relatively
balanced among the available sequencers during that period. Achieving
such a dedication/assignment plan may not be feasible, however, within )

the current availability of dispensing heads on the sequencers.

Therefore, a resulting solution, given any set of typical problem
parameters, may require addition of extra heads to the sequencers. The )
objective function of their model is designed to obtain a

dedication/assignment plan requiring the fewest additional heads.

To accomplish this, two different sets of decision variables are

used in the model. The first set of decision variables govern the

dedication of dispensing heads to component types, while the second set

govern the assignment of pack types to sequencers. Some constants |
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describing the sequencing environment and a detailed description of the

two sets of decision variables follow:

L - The number of available sequencers.

M - The total number of pack types to be produced.

N - The total number of different component types.

Ck - The number of dispensing heads currently available on the kth

sequencer, for k = 1 to L.

Recall that a typical problem environment consists of 3 to 6 available
sequencers, 20 to 40 pack types to be produced, and anywhere from 200
to 400 different component types which are needed for production of the
required pack types.

The decision variables used in the model are:

xjk - This is a 0-1 variable (for j = 1 to N and k =1 to L) indicating

the allocation of the different component types to the available
sequencers. Xjk = 1 if component type j is allocated to the kth
sequencer and xjk = 0 otherwise. The number of 'x' decision
variables in the model is determined by the product of the
number of available sequencers, L, and the number of different
component types, N, in any typical problem. In other words,
there are N*L 'x' decision variables in any given problem.
Notice that if Xik = 1, then one (and only one) dispensing head

on the kth

sequencer will be dedicated to component j.
Yijx - This is a 0-1 variable (for i =1 toMand k =1 to L) specifying
the assignment of the pack types to the available sequencers.

Yik © 1 if pack type i is assigned to the kth sequencer (that is,
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the sequenced tape corresponding to pack type i will be prepared
by the kth sequencer) and Yik = 0 otherwise. The number of 'y'
decision variables in the model is determined by the product of
the number of available sequencers, L, and the number of pack
types to be produced, M, in any typical problem. In other words,

there are M*L 'y' decision variables in any given problem.

The Fathi/Taheri model 1is categorized as a pure 0-1 integer

programming (IP) model, as all of the model decision variables (xjk 3
and yik's) may only take on the values of O or 1. Furthermore, the IP
model contains L(M+N) decision variables. That is, since the number of

'x' decision variables is N*L, and the number of 'y' decision variables

is M*L, then the total number of decision variables, given any set of
typical problem parameters, is the sum of the two, or L(M+N). Relating
this formula to the figures describing a typical problem environment (L
= 3 to 6 sequencers; M = 20 to 40 pack types; N = 200 to 400 different
component types), their IP model could have anywhere from 660 to 2,640
decision variables. The IP model for the sequencer assignment problem
is presented in Fathi and Taheri [1986, p. 12].

In addition to the objective function, their model consists of
four distinct groups of constraints, of which only one will be
addressed in depth. Recall that the two goals of management are
minimization of change-over time between consecutive runs on the
sequencers, and a relatively even distribution of work among the
available sequencers throughout the planning horizon. To achieve the
second goal, a group of load-balancing constraints is introduced into

the model. These load-balancing constraints are designed to limit the
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total workload assigned to each sequencer during the planning horizon.
As mentioned earlier, workload is measured by the total number of
component insertions that a sequencer makes while it produces all of
its assigned sequenced tapes. It seems reasonable to assume that the
total workload .assigned to a sequencer is proportional to the total
number of individual components inserted by that sequencer. As a
preface to the derivation of these load-balancing constraints,

additional notation must be defined:

A - An M by N matrix where (for i = 1 toMand j = 1 to N) 3y = 1if

pack type i requires component type j, aij = 0 otherwise.
b. - The number of different component types on pack type i, for i =1

to M. Notice that

for i=1¢toM

o

"
W =2

o

b% - The total number of components on pack type i, for i = 1 to M.
Notice that b% > bi’ due to the fact that pack type i might
require more than one unit of any particular type of component.

v: - Production volume for pack type i, that is, the total number of
units of pack type i to be produced for i = 1 to M over the
planning horizon. Notice that sequencing is a merging operation,
thus b%vi is a measure of the total amount of work performed by a
sequencer to produce the total demand for the pack type i (b%vi is
the total number of components to be sequenced for all packs of

type i).
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For k = 1 to L, let Sk be the maximum number of components

kth

permitted to be inserted by the sequencer during the production

period. The kth constraint in this group will then be

x4

Lovibiys <S¢ for k=1¢tol
i=1

The values for all Sk's must be provided in advance via managerial
policy. If management's policy is the relative even distribution of
the total workload among all of the available sequencers, then Sk (for
k = 1 to L) could be the total number of components to be mounted
during the production period divided by L, the number of available

sequencers, plus a relatively small constant. That is, let

Sk R + constant (1)

On the contrary, if management's policy specifies an uneven
distribution of the load for whatever reason, then the values of the
Sk’s would need to be fixed accordingly. In any case, it is important
that the selection of the values of the Sk's is such that the sequencer

assignment problem remains feasible.

2.4 Model Performance

A variety of procedures are suitabie for solving the Fathi/Taheri
mathematical model. The LINDO computer program [1984] is a system
which solves linear and 0-1 integer programming models. The solution

procedure used by LINDO to solve integer programs is based around the
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enumerative method known as branch-and-bound. For a detailed
discussion of integer program solution methods, see Salkin [1975] and
0zan [1986].

To provide a solution to an integer program (IP), LINDO first
solves the model using linear programming (LP) techniques. See Murty
[1983]. The ordinary LP solution generally assigns fractional values
to some or all of its decision variables. For a minimization problem,
the LP solution provides a lower bound on the optimal solution to the
IP. By chance, if the LP solution is all integer, then the LP solution
is, in fact, an optimal solution for the 1IP. Barring this
circumstance, LINDO fixes the user-designated integer variables to
either 0 or 1 through branch-and-bound procedures to derive an integer
solution. In order to utilize LINDO, the IP model must be specifically
formulated into an objective function and a body of constraints. This
model formulation 1is based on input parameters and assembled by a
matrix generator.

The size and structure of the model formulation depends on input
parameters and known data associated with the input parameters. The

input parameters are:

L - The number of available sequencers.
M - The total number of pack types to be produced.

N - The total number of different component types.

For any typical combination of these three parameters, the model

formulation consists of the objective function and M + 2L + (L*M)

constraints. The total number of decision variables (xjk's and yik|s)
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in the model formulation equals L(M+N). The total number of 'x'

integer variables equals L*N. The total number of 'y' integer
variables equals L*M.

Other known data required to completely define the model
formulation are: the component requirements, by number and type, for
each pack type to be produced; the number of units of each pack type to
be prduced (vi); the number of available heads per sequencer (Ck); and
a volume capacity (Sk)’ measured in terms of component insertions,
representing the maximum workload that may be assigned to each
sequencer. Throughout this thesis, the sequencer volume capacities are
computed according to equation (1), so that a relatively even workload
distribution is maintained. Any deviation from this even workload
distribution concept is explicitly noted.

When the model formulation is completely defined by the input, it
is then assembled by a matrix generator. The purpose of the matrix
generator is to fashion the model formulation into a specific format
recognizable to LINDO. The matrix generator is programmed as a
subroutine that LINDO calls as it solves the problem. (See Appendix
8.1) For a detailed discussion of matrix generators, see the LINDO
references [1984, 1986].

To initiate the test phase of the Fathi/Taheri IP model, an
extremely atypical set of input parameters (L = 3 sequencers; M = 3
pack types; N = 4 different component types) and associated known data
were generated. The test problems were solved by LINDO on a VAX 11/750

computer. The user must designate those variables that are to be

integer-valued. Otherwise, LINDO may assign fractional values to those
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variables in its final solution. This particular problem has 3(3+4) =
21 total integer variables. There are 3*4 'x' integer variables, and
3*3 'y' integer variables. These input parameters describe an
incredibly small problem, but the problem serves to reveal a very
interesting phenomenon.

The initial LP solution assigned some integer values, and some
fractional values, to the 9 'y' variables as expected. However,
integer values of 0 or 1 were assigned to all 12 'x' variables. To
satisfy our curiosity, numerous other small problems were solved by
LINDO. Each time in the initial LP solution, values of 0 or 1 (rather
than any fractional values) were assigned to all 'x' variables, even
though LINDO was never explicitly instructed to do so. This phenomenon
could be due to the special structure of the IP model, although, as of
yet, we have not been able to fully explain it. It was hypothesized
that this phenomenon would have a significant favorable impact on the
overall computational requirements of the branch-and-bound enumerative
procedure used by LINDO.

The logic supporting this hypothesis centered on the fact that any
given problem has L(M+N) decision variables which must be
integer-valued. If all of the 'x' decision variables are always
assigned values of 0 or 1 in any optimal solution to the corresponding
LP model, then only the 'y' decision varijables would have to be
identified to LINDO as integer variables. This results in a reduction
from L(MtN) to L*M decision variables that must be designated as

integer variables. Recalling typical sequencing environment values for

L, M, and N, this results in almost 917 fewer integer variables that
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would constitute the branch-and-bound node network. Simpiy, if the
branch-and-bound network is significantly reduced in size, it is
reasonable to assume that the search algorithm utilized by LINDO would
be less time-consuming, thus leading to an optimal solution in a
shorter time span.

The matrix generator that formulates the sequencer assignment
problem for LINDO was altered to take advantage of this phenomenon.
The same problem was entered again, and an optimal IP solution was
achieved very quickly. A second, larger problem was generated for
testing, although still much smaller than a typical problem. The input

parameters for this larger problem are:
L = 3 sequencers; M = 10 pack types; N = 20 different component types.

The number of dispensing heads per sequencer (Ck) = 10, and the volume
capacity per sequencer (Sk) remained relatively balanced.
The 3*10 'y' decision variables were identified to LINDO as

integer variables, and some 'y' variables were assigned fractional
values in the LP solution as expected. It was discovered during the
succeeding branch-and-bound phase, in which LINDO assigns 0-1 values to
all of the 'y' variables, that the model required an extraordinarily
long computation time to achieve an optimal IP solution. The computer
required a CPU time of roughly 46 minutes, and performed 99,443 pivots
to achieve an optimal IP solution. The branch-and-bound network

consisted of 3,689 branches. The reader should note that this problem

has a total of 3(10+20) = 90 decision variables. The smallest problem

in a typical sequencing environment has 3(20+200) = 660 decision
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variables. This sample problem 1is 86% smaller than the smallest
typical sequencer assignment problem. One can only imagine how muc"
time the computer would need to solve a typical problem using
branch-and-bound techniques.

An attempt was made to unconstrain this sample problem to an
atypical extent to determine if the model was sensitive to certain
parameters. The volume capacity (Sk) of each sequencer was computed
such that all of the pack types could be assigned to only one of the
available sequencers. In effect, the workload distribution was skewed
so that any sequencer would be permitted to produce all of the
sequenced tapes, thus causing an imbalance in the workload
distribution. Additionally, the number of heads per sequencer was
increased to 17. This is an inordinately high number in comparison to
the total number of different component types (20).

To achieve an optimal IP solution for this less constrained

sequencer assignment problem, the computer required a CPU time of
roughly 14.5 minutes, and performed 29,371 pivots. The
branch-and-bound network consisted of 1,571 branches.

It is apparent that this variation of a sequenced tape production
scheduling problem 1is not readily solved to optimality through
branch-and-bound procedures. Recall that optimality for the sequencer
assignment problem equates to total elimination of all change-over time

between consecutive runs on the sequencers. Previous research

indicates that large-scale zero-one linear programming problems, such
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as the sequencer assignment problem, have chronically recorded
unreasonable computation times to achieve optimal solutions. An
article by Crowder, Johnson and Padberg in the Operations Research
journal [1983] contains a study of ten large-scale zero-one linear
programming preblems. To paraphrase, their report strongly confirms
that a combination of problem preprocessing, cutting planes, and clever
branch-and-bound techniques permits the optimization of sparse
large-scale zero-one linear programming problems. They state that even
after problem preprocessing, the remaining gap between the optimal LP
solution and the optimal IP solution is "still too large to permit one
to expect completion of the branch-and-bound phase within a reasonable
time Timit" [1983, p. 829].
Spielberg [1979, p. 157] writes

. large scale LP problems can still be inordinately
d1ff1cu1t on account of degeneracy, and there seems no
prospect for easy remedies. The node problems of the BB
(branch-and-bound) approach may therefore prove to be too
difficult, and enumerative approaches (or heuristic ones;
which are intrinsically more related to enumeration than to
BB programming) may be required.

Obviously, Spielberg is leaning towards alternate approaches to solve
large-scale zero-one linear programming problems. The subject matter
of the following chapters describes a heuristic approach to another
variation of the sequenced tape production scheduling problem.

The sequencer scheduling/assignment problem is created by
management's decision not to purchase extra dispensing heads, but
instead, to tolerate some sequencer change-over time. Due to this
self-imposed constraint, it is very doubtful that this problem can be

solved to optimality in polynomial time. McGinnis et al. [1986] report
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that this sequencer scheduling/assignment problem is NP-hard.
Therefore, one practical approach to this problem is a heuristic
procedure which is computationally efficient, although it may result in
a suboptimal solution.

Papadimitriou and Steiglitz [1982] explain the definition of
NP-hard problems, and discuss the concept by which a problem is
classified as NP-hard. Additionally, they offer some insight into the
value of heuristic approaches. They describe a heuristic as any
approach without a formal guarantee of performance, and assert that
such approaches are certainly valid in practical situations.
Development of such a heuristic approach is the topic of the remaining

chapters of this thesis.
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CHAPTER 3

THE SEQUENCER SCHEDULING/ASSIGNMENT PROBLEM

3.1 Problem Background

The sequencer scheduling/assignment problem portrays a realistic
situation involving constrained resources (sequencer dispensing heads).
Consider, again, a situation where a certain number of sequenced tapes,
M, must be produced within the planning horizon (typically, 20 < M <
40). The problem surfaces when the total number of different component
types required to produce all of the sequenced tapes exceeds the total
number of dispensing heads on the available sequencers. Therefore, it
is physically impossible to load all of the required component tapes on
the sequencers at one time. This situation demands at some point in
time during the planning horizon that at least one of the sequencers
will have to halt for unloading/loading of component tapes in order to
produce all of the sequenced tapes.

Even if the total number of different component types does not
exceed the total number of available dispensing heads, it might still
not be possible to allocate different component types to dispensing
heads of different sequencers so that all of the different component
types required for each sequenced tape are available on one sequencer.
In any case, the thrust of the remaining chapters of this thesis is
focused on the scheduling situation involving imminent sequencer
change-overs. Also, the reader should construe 'component types' to
mean ‘'different component types.' The word 'different' is frequently

omitted from this point forward.
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Mindful of management's desire to streamline production
operations, a concerned production supervisor, in 1light of this
impending situation, would immediately approach management with a
request to purchase extra dispensing heads. "We can eliminate all
change-over time by adding extra heads." The Fathi/Taheri model can be
used to determine the fewest number of additional heads to purchase, he
could argue. Faced with management's very final decision not to
purchase extra heads, but instead, to tolerate some (minimal)
change-over time, the dejected production supervisor realizes that he is

confronted with a very complex, formidable task.

3.2 Problem Statement

By some method, a schedule that assigns the sequenced tapes to be
produced to the available sequencers must be devised. In addition,
this production schedule must designate the exact order by which
different sequenced tapes are produced on each segquencer. Obviously,
this production schedule dictates which component tapes are loaded onto
the individual dispensing heads, and when they are to be loaded. An
efficient production schedule serves to reduce the inevitable
change-over time between consecutive runs on the sequencer(s).

As mentioned earlier, development of an optimal schedule could be,
computationally, quite difficult. Our objective, then, is to develop a
heuristic procedure that devises such a production schedule in a
reasonable amount of time, even though the resulting schedule may not
be an optimal one. This heuristic procedure would be aimed at reducing

the total change-over time between consecutive runs on the sequencers

for a given set of pack types and their associated volume requirements,
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In addition, the heuristic procedure should ensure a relatively even
distribution of total workload among the available sequencers

throughout the sequenced tape production process.

3.3 Strategy of Heuristic Approach

In order to develop a heuristic procedure that provides a solution
to the sequencer scheduling/assignment problem, the objective of the
procedure must be clearly defined. The formal objective is previously
stated in Section 3.2. Informally stated, the objective is to allocate
the requisite component types to the available dispensing heads such
that the total sequencer change-over time is small and that each
sequencer roughly makes a similar number of component insertions over
the planning horizon. The sequenced tapes to be produced compete for
dispensing heads. Some sequenced tapes have similar component type
requirements, while others may be vastly different. In order to
capitalize on the number of existing dispensing heads, it is logical to
assign sequenced tapes that require similar component types to the same
sequencer.

The heuristic approach pursued in order to provide a solution to
the sequencer scheduling/assignment problem embodies this Tlogical
thought process. The fundamental strategy employed to confront the
sequencer scheduling/assignment problem is to associate together those
pack types which require similar component types. Conversely, those
pack types that bear little resemblance to one another are
disassociated by assigning them to different sequencers when possible

(recall the relatively balanced workload restriction).
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This strategy governs not only the assignment of pack types to
sequencers, but it also governs the order of production of the
sequenced tapes on each sequencer. When the sequenced tapes have been
assigned to a sequencer, the exact order by which they are successively
produced is necessary. Ordering their successive production based on
the similarity of their respective component type requirements would

likely result in shorter, and possibly fewer sequencer change-overs.

3.4 Measures of Goodness

Three different heuristic procedures are developed to provide
solutions to the sequencer scheduling/assignment problem. The inherent
structure of each of these procedures is founded upon the fundamental
strategy outlined in Section 3.3. When different heuristic procedures
are developed to provide solutions to the same problem, various
measures of goodness may be identified that permit comparison of the
different procedures with respect to their individual performance. In
an empirical sense, conjectures as to their relative merit may be made
after numerous typical problems are solved.

In this section, the primary and secondary measures of goodness by
which the three different heuristic procedures are compared are
thoroughly discussed. These two measures of goodness are valid
discriminators which accurately gauge the overall utility of the
resulting production schedules. Other, less significant measures of
goodness are considered. These less significant measures are
marginally useful when the performance of the three different heuristic

procedures is extremely competitive with respect to the primary and

secondary measures of goodness. In other words, when production
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schedules devised by the three different procedures, for a particular
set of problem parameters, cannot be conclusively gauged by the primary
and secondary measures of goodness, these less significant measures of
goodness may provide some insight as to their relative performance.

The primary measure of goodness for the three different heuristic
procedures is the total number of change-overs that occur in any
production schedule. The major contributor to an extended sequencing
planning horizon is sequencer halts. A production schedule that causes
two sequencer change-over periods is categorically worse than a
sequenced tape production schedule that causes only one change-over
period. (A sequencer that makes two change-overs is exactly equivalent
to two sequencers making one change-over apiece.) Sequencer change-over
periods are prominent in this respect because the set-up operations
required to prepare a sequencer for processing consume the most time,
and adversely extend the planning horizon more than any other
operation. Given a choice of production schedules devised for the same
set of problem parameters, the production supervisor would always
select the schedule requiring the fewest number of change-over periods.
Further explanation of the high level of prominence placed on the
number of sequencer change-overs is in order.

Ordinarily, a production supervisor might have reason to debate
the overall utility of different production schedules devised for the
same set of problem parameters. Recall that management has two goals
for production. The first goal is minimal sequencer change-over time,
and the second goal is a relatively even workload distribution. The

production supervisor would be in a quandary, for example, if one
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production schedule required only one sequencer change-over, but had an
unbalanced workload distribution, while another production schedule
required two change-over periods, but maintained a relatively balanced
workload distribution. With respect to management's two goals,
selection of the better production schedule is possibly ambiguous.

Fortunately, the three different heuristic procedures are
structured not to permit this set of circumstances. The three
procedures maintain a relatively balanced workload at all times,
thereby always satisfying the second of management's two goals. For
this reason, the total number of sequencer change-overs in any
production schedule is the paramount discriminator in gauging their
relative performance.

The secondary measure of goodness is the total number of component
tape changes necessitated by a given production schedule. This
secondary measure is especially relevant when the resulting production
schedules devised for the same problem all specify an identical number
of sequencer change-overs. When a particular sequenced tape is
designated for production, and all of the component tyﬁes required for
that sequenced tape are not currently mounted, the sequencer must halt.
Component tapes not needed for that sequenced tape are removed to make
dispensing heads available for the required unmounted component tapes.
Intuition concedes that the total time needed to unload and Tload
component tapes is directly proportional to the number of component

tapes that must wundergo this operation. Therefore, the second

criterion to compare the performance of the three different heuristic
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procedures is the fewest number of component tape changes required by a
production schedule for the same set of problem parameters.

The relative merits of the three different heuristic procedures
developed in this thesis are empirically determined strictly with
respect to the primary and secondary measures of goodness. Three
additional, less significant measures of goodness provide some insight
into the comparative performance of the different heuristic procedures.
These, for lack of a better term, tertiary measures are: sequencer
workload distribution; the total number of different component types
required by any sequencer to produce all of its assigned sequenced
tapes; and the total number of dedicated dispensing heads per sequencer
within a planning horizon.

Production schedule data pertaining to these tertiary measures of
goodness is presented. However, that data should be digested only as a
marginal consideration with respect to relative performance, as the
three different heuristic procedures are not rank ordered based on
these tertiary measures. The three tertiary measures merely assist in
assessing the performance of the different heuristic procedures when
their resulting production schedules devised for the same problem
cannot be conclusively gauged by the primary and secondary measures of
goodness.

The first tertiary measure of goodness discussed is the sequencer
workload distribution. The treatment of the distribution of total
sequencer workload over the planning horizon is addressed earlier in
this section. The basic structure of the three different heuristic

procedures is such that the distribution of total workload is
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relatively balanced at all times. However, the three procedures may
devise entirely different production schedules for the same set of
problem parameters. Therefore, the distribution of total workload may
be more or Jless balanced for each production schedule. If the
situation demands (the total number of sequencer change-overs, and the
total number of component tape changes specified by the resulting
schedules of all three procedures are identical for the same problem),
the overall sequencer workload distributions generated by the three
schedules may be compared to determine which heuristic procedure has
the most evenly balanced workload distribution, thus indicating the
better of the three schedules.

The second tertiary measure of goodness is the total number of
different component types required by any sequencer to produce all of
its assigned sequenced tapes. Once all of the sequenced tapes are
assigned to the available sequencers for production, the total number
of different component types required to produce all of the assigned
sequenced tapes on each sequencer 1is easily calculated. When the
required number of different component types exceeds the fixed number
of dispensing heads, it is clearly inevitable that that particular
sequencer will experience a change-over during the planning horizon.

The duration of any sequencer change-over period is, in part, a
function of the number of component tapes changed in that change-over
period. Intuitively, the total amount of change-over time for a given
sequencer 1is expected to be decreased as the number of different

component types, over and above the number of dispensing heads is also

decreased. In other words, if the total number of component tapes that
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must be changed on a sequencer within a planning horizon is small, it
is reasonable to assume that that sequencer will experience a lesser
amount of change-over time. The possibility that a component tape may
be dismounted, then remounted at a later time in that same production
period, is not- ruled out. However, an efficient production schedule
should make this particular event remote at best.

The final tertiary measure of goodness is the total number of
dedicated dispensing heads per sequencer within a planning horizon.
The definition of ‘'dedicated,' in this context, is that once a
component tape is mounted onto a sequencer dispensing head, it is never
removed (except, of course, for when a component tape exhausts its
components). ‘'Dedicated’ dispensing heads surface when the particular
component type on that head is required for production by every
sequenced tape assigned to that sequencer. The logic supporting this
measure of goodness lies in the fact that there are a fixed number of
dispensing heads on any sequencer. If the number of dedicated
dispensing heads cn a particular sequencer approaches its fixed number
of heads, by complementarity, there are fewer dispensing heads on that
sequencer eligible for unloading and loading of com nnent tapes. A
correlation might exist between a large number of dedicated dispensing
heads and a reduced amount of change-over time for any given sequencer.

To emphasize, these tertiary measures of goodness are not, in
themselves, empirical evidence enough to make a valid distinction
between the three different heuristic procedures. They are marginally
useful in possibly selecting one heuristic procedure over another when

their resulting production schedules are very similar. They are also
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very subjective in nature, as their results are given to interpretation

and production experience.
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CHAPTER 4
DESIGN OF HEURISTIC APPROACH

4.1 Developmental Assumptions

For a problem as broad as the sequencer scheduling/assignment
problem, some 'underlying assumptions are relevant in developing a
heuristic approach. Through legitimate assumptions, the problem at
hand is analyzed in greater depth. This analysis is essential to
achieve a satisfactory solution. Two main assumptions are incorporated
into the design of this heuristic approach. A third assumption is not
incorporated, as information necessary for its incorporation could not
be obtained. However, this assumption is discussed because it is
associated with the second of manayement's two  production
goals--relatively balanced sequencer workload distribution.

The first assumption incorporated into this heuristic approach is
that a pack type does not require more component types than there are
dispensing heads on any available sequencer. This assumption is
previously mentioned in Section 2.1. In a typical sequencing
environment, each available sequencer is equipped with a fixed number
of dispensing heads. When the number of component types required by
an assigned pack type exceeds this fixed number, that particular
sequencer requires a change-over just to produce that one corresponding
sequenced tape. This situation is highly irregular and would probably
lead management to purchase additional heads to produce these outsized
sequenced tapes.

The second assumption incorporated into this heuristic approach is

- the number of each pack

that the pack type volume requirements (Vi
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type to be produced) is roughly similar. This assumption relates to
the definition of sequencer workload and greatly affects the utility of
the formula used to compute sequencer volume capacity (Sk). In the
sequencing environment, work is measured by the total number of
component insertions that a sequencer makes over its planning horizon.
Suppose there exists a production volume requirement for a particular
pack type that is abnormally higher than all of the other pack type
production volume requirements. Two different situations may occur
given this particular event.

The first case surfaces when the total number of component
insertions required to produce the sequenced tapes for all units of
that particular pack type does not exceed the volume capacity (Sk) of
any available sequencer. In this case, one sequencer is capable of
producing all of those particular sequenced tapes. However, due to the
extremely large component insertion requirement attached to that
particular sequenced tape, very few different pack types may be
assigned to that sequencer. To compensate for this unusual assignment,
the remaining sequencers are required to produce a disproportionately
large number of different sequenced tapes. It is reasonable to assume
that a sequencer stands a better chance of experiencing a change-over
as the number of different sequenced tapes it is assigned to produce
increases. The sequencer producing the sequenced tape with the
abnormally high volume requirement would experience few, if any,

change-overs, since it is basically producing one type of sequenced

tape.
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The second case surfaces when the total number of component
insertions required to produce all of the sequenced tapes for that
particular pack type exceeds the volume capacity of any available
sequencer. In this case, one sequencer is not capable of producing all
of those particular sequenced tapes because the computed volume
capacity (Sk) is not large enough. Therefore, the assignment of those
particular sequenced tapes would have to be divided over multiple
sequencers. Both cases mentioned above would require special
consideration to be properly treated in a heuristic approach.

A third assumption, not incorporated into this heuristic approach,
would be valuable. Sequencer processing time is measured in terms of
component insertions. When a sequencer experiences a change-over, it is
not inserting components; hence, its processing time is temporarily
halted. However, chronological time is still elapsing. A method to
relate sequencer change-over time (chronological time) to sequencer
processing time (number of component insertions) would be beneficial.
As of now, all sequencer change-over periods are considered to be
equivalent, regardless of the number of component tapes that are
changed during the change-over period. This relation would permit
comparison of the relative duration of sequencer change-over periods,
thus providing the means by which production schedules with an
identical number of sequencer change-overs may be distinguished.

The total chronological time consumed during a sequencer
change-over is, in part, a function of the number of component tape

changes required. Therefore, it is very likely that different
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production schedules devised for the same problem, each specifying an
identical number of sequencer change-overs, are not completed in the
same chronological time. A formula that could be used to relate the
duration of a particular sequencer change-over period to equivalent
sequencer processing time, in terms of a specific number of component

insertions, is.
T=K+ cX
Definitions of the terms in this formula are as follows:

T - The total processing time, in terms of the specific number of
component insertions, of ore sequencer change-over period.

K - The set-up time incurred during a sequencer change-over period, in
terms of a fixed number of component insertions. This is a
constant.

¢ - The time required to change one component tape, in terms of a fixed
number of component insertions. This is also a constant.

X - The total number of component tapes that must be changed in one

particular sequencer change-over period.

Valid estimates for the values of the constants, K and ¢, could
not be obtained. The routine sequencer set-up time, and the time
required to change one component tape, can be roughly equated to the
time it takes a sequencer to insert a certain number of components.

These constants would most 1likely be estimated through actual

production experience.
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This formula equates the chronological time consumed during a
particular sequencer change-over period to a specific number of
component insertions that a sequencer routinely makes in the same
amount of chronological time. By incorporating this formula, the total
production volume requirement of any sequencer would accurately reflect
the total number of component insertions required to produce its
assigned sequenced tapes, plus an equivalent number of component
insertions incurred by the change-overs experienced by that sequencer.
The algorithm would take these equivalent sequencer production volume
requirements into account and balance them accordingly as it devised an
appropriate production schedule. In this manner, the total sequencer
processing time required by a production schedule would be more
accurately gauged. This permits a better insight when comparing the

utility of different production schedules devised for the same problem.

4.2 Heuristic Algorithm

The specific algorithm, which assigns all of the pack types to be
produced to the L available sequencers, strictly adheres to the
strategy discussed in Section 3.3. The algorithm assigns pack types
which exhibit a high degree of similarity, in terms of component type
requirements, to the same sequencer. The algorithm separaies pack
types that have 1little in common, in terms of component type
requirements, by assigning them to different sequencers.

In order to assign pack types to the sequencers according to this

strategy, the precise meaning of the terms similar and common must be

defined for the algorithm. An exact understanding of these two terms
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enables the algorithm to accurately establish the correct relationship

between pack types in terms of component composition.

4.2.1 SIMILAR Pack Types

There exists one precise definition of the term similar. The
algorithn searéhes for similar pack types only when it 1is in the
process of scheduling a sequencer for production. After the algorithm
has assigned the first pack type to a sequencer, it selects the most
similar, unassigned pack type. The algorithm attempts to assign this b
most similar pack type to that same sequencer. I[f that pack type is
successfully assigned, the algorithm again selects the most similar, '
unassigned pack type, and attempts to assign it to that same sequencer.
This process is repeated until the aigorithm can no longer schedule
a sequencer for one of several reasons. ‘
The precise, unwaiverable definition of the term similar, with
respect to pack types, in the context of a sequencing environment, is:
When one gr more pack types have been assigned for production
to the k sequencer (for k = 1 to L), the unassigned pack
type that would require the fewest number of additional,
different component tapes to be mounted on that kth
sequencer, so as to produce that pack type together with the
previously assigned pack type(s) on the same production run,
is, in fact, the most similar, unassigned pack type.
This definition of similar is identical for the three different
heuristic procedures. This specific definition of similar capitalizes
on the fixed number of dispensing heads, and permits the maximum

possible number of sequenced tapes to be produced together on a 1

sequencer, for a particular production run. [t is reasonable to assume

that a production schedule which always assigns the maximum possible




—-www

47

kth sequencer for all production runs

number of sequenced tapes to tie
will, most 1likely, favorably result in a small amount of total
sequencer change-over time.

To emphasize, the algorithm does not select the first pack type
assigned to the kth sequencer (for k = 1 to L), for all production

runs, by incorporating the definition of the term similar. The

algorithm does, however, select all pack types subsequently assigned to

the kth sequencer, for all production runs, by solely incorporating the
definition of similar.

With one exception, the pack type assigned to the kth sequencer
(for k = 1toL), for all production runs, is selected by incorporating
one of three definitions of the term common. The one exception
pertains to the very first assigned pack type when the algorithm
commences the scheduling process. This first pack type is selected via
a specific starting rule that is in no way associated to the definition
of the term common. Discussion of this starting rule is presented in
Section 4.3.1. The multiple definitions of common, and the method by
which the three definitions are implemented in the heuristic approach
for the sequencer scheduling/assignment problem, comprise the subject
matter of Chapter 5. It is sufficient to note that the three
definitions of the term common correspond to the three different
heuristic procedures. [t is not necessary to know the three
definitions of common in order to follow the algorithm as it schedules
sequenced tapes for production.

In order for the algorithm to assign subsequent pack types to

sequencers based on the definition of the term similar, the actual
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relationship indicating the degree of similarity between pack types
must be determined. The method by which the similar relationship
between pack types 1is established, in terms of component type

requirements, is described in the next section.

4.2.2 Degree of Similarity Between Pack Types

Several operations must be performed prior to initiation of the
algorithm. The input parameters, L, M, N, and associated known data
(including the number, and type, of each component required by each
pack type) are entered. With this data, the various component type
totals (bi’ b%, vib%; see pg. 22 for definitions) are computed.

The similar relationship between pack types is established next.
The method by which this similar relationship is established is through
the formation of a two-dimensional array, named Array DIFFER. The
numerical entries contained in DIFFER indicate the degree of similarity
between pack types in terms of component type requirements.

Array DIFFER is an (M+L)*M matrix. At this stage of the heuristic
procedure, only the first M rows of the total M+L rows are filled with
numerical entries. The M+k'" row of DIFFER, for k = 1 to L (or
equivalently, the last L rows), is initially filled with numerical
entries after the algorithm assigns two pack types to the kth
sequencer. Discussion pertaining to these last L rows of DIFFER is
presented in Section 4.3.4.

The discussion in this section pertains only to the first M rows
of Array DIFFER. The numerical entries in the jndividual elements of

th

the i row (for i = 1 to M) of DIFFER are derived by comparing the

different component types required by M-1 pack types against the
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different component types required by pack type i. Obviously, pack
type i is not compared against itself. The operation by which the
different component types required by the M-1 pack types are compared
against the different component types required by pack type i, to fill

th

the i*" row of DIFFER, is best described as a question:

If the component tapes required to produce pack type i are already
mounted on the dispensing heads of a sequencer, how many more
different component tapes have to be additionally mounted in order
to produce pack types i and q together on the same sequencer? (i
=1toM; q=1toM;i#q)
This question is posed for every possible comparison of two pack types.
It is essential to note that the implication of comparing pack type q
against pack type i is, strictly, that the component tapes of pack type

i are already mounted, and it is to be determined if pack type q may be

produced together with pack type i. Example 4.1 demonstrates the
formation of the first M rows of Array DIFFER.

EXAMPLE 4.1

Suppose that a sequencing environment consists of the following:

L = 2 available sequencers.

M = 3 pack types to be produced.

N = 12 total different component types.

Ck = 10 dispensing heads on the kth sequencer.

The total number of different component types (bi) required by packs 1,
2, and 3 are 7, 6, and 6, respectively. The following 'A' matrix
(Table 4.1) represents the component type requirements of the three

pack types.
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Table 4.1 Component Type Requirements [matrix A]
Component Type 1 2 3 4 5 6 7 8 9 10 11 12

b,
Pack type 1 1{1loflof{1lol1f1{1]o0o]o]1 7
Pack type 2 | Oo|1}lof{1|1fo]oj1lof1{1]| ol &
Pack type 3 olol1lol1{1l1lotr1]lolo]| 1} &6

Recall that if aij = 1, then pack type i requires component type j for

production; aij = 0 otherwise.

In forming the first M rows of Array DIFFER, the component type
requirements of pack 1 are compared individually against the component
type requirements of packs 2 and 3. The component type requirements of
pack 2 are compared individually against the component type
requirerents of packs 1 and 3. The component type requirements of pack
3 are compared in the same fashion to packs 1 and 2. These comparisons
are made by posing the question described earlier in this section. The
question is posed for every possible comparison of two pack types
(e.g., 1 and 2 together; 1 and 3 together; 2 and 1 together; 2 and 3
together; 3 and 1 together; and 3 and 2 together). Since a pack type
is not compared against itself, the main diagonal of the M*M portion of

DIFFER is represented by hash marks. The numerical entries in the M*M

portion of DIFFER for this example are shown in Table 4.2.

W, ,1..0‘ N AN X\ .“““ ."““.. .“ - --;-- -‘,- AT AT N A7 A AN By --‘--.-¢v*\~“ \.-._\‘-_-.\-._.‘ .

) M)



Table 4.2 M*M Portion of Array DIFFER

Packs
M = number of pack types = 3 1 2 3
(i =1toM) Pack 1{-{31}2
Pack 2 14 {- 15 M rows
Pack 3 13 1{51-
L = number of available
L rows

o
o
sequencers = 2 %_-%_-%._
(k=1tolL) o

(I S S
The operations required to compare pack 2 against pack 1 are described
below (refer to Table 4.1). Identical operations are required for all
comparisons of two pack types.

Pack 1 requires seven different component types for
production--component types 1, 2, 5, 7, 8, 9, and 12. Pack 2 requires
six different component types for production--component types 2, 4, 5,
8, 10, and 11. The question is posed: If the component tapes required
to produce pack type 1 are already mounted on the dispensing heads of a
sequencer, how many more different component tapes have to be
additionally mounted in order to produce pack types 1 and 2 together on
the same sequencer? The only different component types that pack 2
requires that are not already required by pack 1 are component types 4,
10, and 11. Therefore, if pack 1 component types are already mounted,

only three more different component types must be additionally mounted

to produce packs 1 and 2 together. Hence, 3 is the entry in row 1,
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column 2, of Array DIFFER (Table 4.2), which represents the comparison
of compoaent type requirements of pack 2 against the component type
requirements of pack 1.

Two items specific to the M*M portion of Array DIFFER are briefly

th row (for i =

addressed. First, there are always M-1 entries in the i
1 to M) of this portion of the array. Second, the M*M portion of
DIFFER is not symmetric. If it was symmetric, the size of DIFFER would
be reduced, which wculd lend itself to a more efficient algorithm. The
comparison of pack 2 against pack 1 yields a value of 3, while the
comparison of pack 1 against pack 2 yields a value of 4 (see Table
4.2). This is not to say that the corresponding entries will always be
different. (See the entries in Table 4.2 for the comparison of pack 2
against pack 3, and the comparison of pack 3 against pack 2.)

h

To summarize this section, a numerical entry in the qt element

(for g = 1 to M) of the ith

row (for i =1 to M; i # q) of Array DIFFER
strictly indicates the degree of similarity between pack type q and
pack type i. This particular array element represents the comparison
of the component type requirements of pack type q against the component
type requirements of pack type i. The smallest numerical entry in the

ith row represents the pack type that is most similar to pack type i;

the largest entry represents the least similar.

Referring to Example 4.1, if pack type 1, for instance, is first
assigned to a sequencer, pack type 3 is the most similar, unassigned

pack type, with respect to pack type 1, because row 1, column 3

contains the smallest numerical entry (2). This numerical entry of 2
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indicates that, given the seven different component tapes required to
produce pack type 1 are already mounted (b1 = 7), two different
component tapes must be additionally mounted to produce pack types 1
and 2 together on the same sequencer.

Notice that the specific definition of similar capitalizes on the
fixed number of dispensing heads in Example 4.1. The number of
dispensing heads (Ck) for this example equals 10. Assuming again that
pack type 1 is first assigned, pack type 3 is the most similar,
unassigned pack type. Producing pack types 1 and 3 together requires
a total of nine different component tapes. Producing pack types 1 and
2 together requires a total of 7 + 3 = 10 different component tapes.
By utilizing the definition of similar, the number of dispensing heads
required for production is minimized.

After the first M rows of Array DIFFER are formed, the heuristic
algorithm is initiated. The algorithm itself is basically composed of
two parts. In the first part, the algorithm seeks an initial
assignment of pack types to all available sequencers. The computed
sequencer volume capacities (Sk's), with a relatively small constant
inserted in equation (1), ensure that each available sequencer is
assigned at least one pack type in this first production run. In this
thesis, a constant of 10% is inserted to gather the empirical data used
to compare the three different heuristic procedures. If the constant
in equation (1) was fairly large (indicating an unbalanced workload
distribution), the possibility exists that sequenced tapes would not be

assigned to every available sequencer.

- -
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The second part of the algorithm assigns pack types not previously
scheduled for production until none remain. This second part selects
particular sequencers for multiple production runs based strictly on
their individual production volume requirements. The sequencer with
the fewest total number of incurred component insertions required to
produce all of its previously assigned sequenced tapes is always
selected to make the next production run, if one is required. When the
second part of the algorithm terminates, all pack types are assigned to
one of the available sequencers, and a detailed production schedule is

prepared.

4.3 Heuristic Algorithm - Part One

Generally described, the sequenced tape assignment process begins
in this first part of the algorithm by scheduling the first of L
available sequencers. Similar pack types are consecutively assigned to
this first sequencer until one of two possibilities occurs. The first
possibility is that the number of component types required by the
assigned pack types successively decrements the number of available
dispensing heads such that additional pack types may not be assigned
for this first production run. A sufficient number of unallocated
heads must be available to accommodate the additional, unmounted
component tapes required to produce any unassigned pack type. The
second possibility is that the total number of component insertions
required by the assigned pack types approaches the computed sequencer
volume capacity (Sk)’ and the scheduling of any additional, unassigned

pack types would violate the volume capacity of this first sequencer.
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When either of these two possibilities manifests itself, the

algorithm leaves the first sequencer and assigns pack types to another

sequencer by utilizing Array DIFFER. This process is repeated for all

th

L sequencers. When the final L= sequencer is being scheduled, the two

possibilities described above may, indeed, occur. Ffor whichever of
these two reasons prevents additional pack types from being assigned to

the Lth

sequencer, the algorithm proceeds with the second part.

However, depending on the nature of the component type
requirements of the pack types to be produced, all of the remaining,
unassigned sequenced tapes might be feasibly scheduled on this Lth

sequencer. In this case, the algorithm terminates, thus precluding the

need for the second part of the algorithm. The devised production
schedule would reflect that each sequencer makes one production run
only, thereby indicating that no sequencer change-overs are required.

The detailed description of this first part of the heuristic
algorithm is decomposed into five distinct segments. The first segment <
describes the method by which the first pack type is assigned to the L "
available sequencers. The second segment describes two bookkeeping
operations performed by the algorithm after the first pack type is g
assigned to any of the L sequencers. The third segment describes the '::
method by which the second pack type is assigned to each of the L %
available sequencers. The fourth segment describes a comparison :Jﬁ
operation always performed by the algorithm after the second pack type {
is assigned to any of the L sequencers. The fifth segment describes ':‘;
the method by which remaining, unassigned pack types are repeatedly '-E
assigned to each of the L available sequencers until one of the two é
Y
~
L
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previously mentioned possibilities occurs, upon which the second part

of the heuristic algorithm is necessary, or until all of the pack types

are assigned, in which case, the sequenced tape production schedule is
completed.

Numerous operations and procedures performed in the first part of
this algorithm are also performed in the second part. When these
situations occur, they are subtly identified by the inclusion of the
phrase 'for all production runs.' This terminology indicates that the
operations or procedures presently being described are also applicable

in the second part of the algorithm.

4.3.1 Assignment of the First Pack Type to Sequencers

Two separate rules govern the selection of the first pack type

assigned to each of the L available sequencers. One rule, the starting
rule, governs the selection of the first pack type assigned to the very
first available sequencer. The second rule, the 'least common' rule,

governs the selection of the first pack type assigned to the remaining

L-1 available sequencers. These two rules, and the logic supporting

them, are discussed separately.

specific starting rule. This rule states that the first pack type

The first part of this heuristic algorithm is initiated with a
assigned to the very first available sequencer is that pack type

$ requiring the fewest total number of different component types. This

this starting rule, the tie is broken arbitrarily.

"
starting rule selects that pack type with the smallest bi (for i =1 to
M). If more than one pack type qualifies for selection according to
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The immediate logic supporting this starting rule relates to the
concept that sequenced tapes compete for dispensing heads. Obviously,
the assignment of a pack type requiring the smallest number of
dispensing heads implies that the 1largest possible number of
unallocated dispensing heads remains. By associating similar pack
types together on the same sequencer, this starting rule should assist
in capitalizing on the fixed number of available dispensing heads, thus
leading to more efficient production schedules.

The selection of the first pack type assigned to the remaining L-1
available sequencers is governed by the 'least common' rule. The
algorithm attempts to assign pack types together on the same sequencer
based on their high degree of similarity. Conversely then, the
algorithm attempts to separate those pack types that have little in
common, in terms of component type requirements, by assigning them to
different sequencers.

‘ Therefore, when the algorithm begins scheduling the remaining L-1
available sequencers, the first pack type selected is that pack type

whose component type requirements are least common with respect to the

component type requirements of all of the pack types already assigned
on all of the previously scheduled sequancers. The logic supporting
this 'least common' rule stems directly from the strategy of separating
dissimilar pack types in order to reduce change-over time.

If the first assigned pack type has little in common with all
previously assigned pack types, then, logically, all of the similar
pack types assigned with this least common pack type should also have

little in common with all previously assigned pack types. In this

___________________________ NN

At A e At A_IA.’L{A_-L‘ 2 ”ata tu L"ngl‘-l.-('.lf_




58

manner, the strategy of the heuristic approach is embellished. The

'least common' rule is discussed in Chapter 5.

4.3.2 Bookkeeping Operations after Assignment of Pack Types

Two bookkeeping operations performed by the algorithm immediately
after the firsf pack type is assigned for production to any of the L
available sequencers merit discussion. In reality, these two
operations are intrinsic to the algorithm, and are performed not only
after assignment of the first pack type, but after the assignment of
all pack types. However, there 1is a deviation in one of the
bookkeeping operations depending on whether a particular pack type is
assigned first to a sequencer, or assigned thereafter. Therefore, the
dizcussion commences concerning the first assigned pack type. The
deviation in the one bookkeeping operation is explained when the
situation warranting that deviation surfaces.

When the production period begins, all of the sequencer dispensing
heads are unallocated, and the production volume requirement (total
number of required component insertions) of each sequencer eguals zero.
When a pack type is assigned for production to the kth sequencer, the
number of dispensing heads allocated to produce that assigned pack type
is incremented. The production volume requirement (PVR) of the W th
sequencer 1is incremented to reflect the total number of component

insertions required to produce that assigned pack type. Notation used

to portray these two operations is as follows:
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This is the number of dispensing heads allocated to produce all

pack types assigned to the kth sequencer, for a particular

production run. When the kth sequencer undergoes scheduling for

a particular production run, H (for k = 1 to L) = 0. Every

time a pack type is assigned to the kth sequencer, the number of

additional component tapes required to be mounted, in order to

produce that pack type, is added to Hk' Recall that Ck is the

total number of available dispensing heads on the kth sequencer.

The algorithm assigns pack types to the kth sequencer until Hk

approaches, but does not violate, Ck'

This is the total Production Volume Reguirement of the Kt
sequencer incurred by the assignment of all of its pack types

over all production runs. [n other words, PVR  reflects the

total number of component insertions that segquencer k must make
in order to produce all of its assigned sequenced tapes. When
the production period begins, P‘Wk =0 (for k = | to L. .. Every
time a pack type [pack type 1. 1is assigned to sequencer «x, the
total number of component insertions required tc produce pace
type i (called PVPi) is added tgo DJFH. rotntg fairst part of
the algorithm, PJ/F may not esceeq “,r the computed vo'ume

k

. h v )
capacity of the kt sequencer. e Sequencer yi yfe Capar 1t let

(5,'s) are only enforces 1r trin foree pare L, coes nee

restrict the algcrithn 1r  the cecunc par*. TRe g vt
v tr

asS1gNs pack types tou the v seguericer r o tr o dapoe ey e

PVRk approaches, but does nut vitiate, ©
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Therefore, after the first pack type is assigned to the kth
sequencer (for k = 1 to L), the number of allocated dispensing heads

(H is incremented from O to the total number of different component

R
types (bi) required to produce that first assigned pack type i.

Hk,current : bi (2)

The production volume requirement (PVRk) is incremented from 0 to the
production volume reguirement (PVRi) of that first assigned pack

type i.

pVRk.current ) pVRi (3)

The algorithm considers these currently updated, incremented values of

H, and Pvﬂ& before it assigns another pack type to the kth sequencer.

8y doyng so, the algorithm ensures that subsequent scheduling of
unassigned pack types does not violate the sequencer dispensing head

Timits 1Ck). nor does it violate the sequencer volume capacity (Sk)'

4.2.3 Agsrgnment of the Second Pack Type to Sequencers

Atter the bookkeeping operations are completed, the algorithm
ut1lizes only one criterion to select the second pack type assigned to
al!l L sequencers. It selects the unassigned pack type that is most
S1mYTgr ¢ the first pacr type already assigned on the kth sequencer

forow - Lt o . The algoratnm locates this most similar unassigned

. th
pdrr type by spec1ticdl Ly Searching the ut row of Array DIFFER, for

! Lt M ocorrecponding to the torst assigned pack type i). The
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algorithm selects the smallest numerical entry corresponding to an
unassigned pack type (0 is a possible entry).

This smallest numerical entry represents the unassigned pack type

that is most similar to the first assigned pack type in terms of

component type requirements. The notation and appropriate definitions
to identify these numerical entries in the M*M portion of DIFFER are

provided below.

biq - Let bij be the numerical entry in the jth column of the ith
row of Array DIFFER (for j = 1 to M; i = 1 to M; j # i).

b indicates the degree of similarity between pack types i

iJ
and j in terms of their component type requirements. Let biq

= minimum {bi :j=1¢toM;, j #i. Pack type q, then, is

J
most similar to pack type i. If biz = maximum {bij; j=1to

M; j # i}, then pack type z is least similar to pack type i.

If multiple, unassigned pack types appear to be most similar to
th

pack i (multiple biq's in the i row), some computations are performed
to determine which unassigned pack type is actually more similar.

Exampie 4.2 demonstrates this tie-breaking procedure appropriately.

EXAMPLE 4.2

Suppose that three pack types are to be produced by the kth
sequencer. Pack 1, pack 2, and pack 3 require 10, 10, and 9 different
component types, respectively. Assume that pack 1 1is the first
assigned pack type, and the algorithm is attempting to select the

second, most similar pack type for assignment next (either pack 2

) - - x )
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or 3). The first row of Array DIFFER, corresponding to pack type 1,
and the totals of the different component type requirements of the

three packs (bi’ for i = 1 to 3) are shown below.

Packs
1 2 3
Pack 1 - 4 4 bi = 10, b2 = 10, b3 =9

The algorithm searches the pack 1 row to find the smallest entry which

corresponds to the most similar, unassigned pack type. Obviously, a

tie exists (or does it?).

Pack 2 requires ten different component types. From the
definition of the term similar, we know that six of those different
component types are also required by pack 1, since 4 is the entry under
pack 2, indicating that four additional component types must be mounted
to produce packs 1 and 2 together. Pack 3 requires nine different
component types. Five of those are also required by pack 1, for the
same reasons presented with pack 2. These operations demonstrate that
six of ten, or 60: of the different component types required by pack 2
are also required by pack 1. Only five of nine, or 55.6 of the
different component types required by pack 3 are also required by pack

1. The higher percentage indicates a higher degree of similarity.

Therefore, although Array DIFFER reflects the same degree of
similarity between pack 1 and packs 2 and 3 in Example 4.2, these
additional computations actually reveal that pack 2 is, in fact, a
little more similar to pack 1 than pack 3. This tie-breaking

procedure, termed the Highest Degree of Similarity procedure, or HDOS,
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is used every time the algorithm attempts to select the most similar,
unassigned pack type for a particular production run, and Array DIFFER
indicates that a tie exists. It is possible that even after these
computations are performed, a bonafide tie still exists. In this case,
the tie 1is broken arbitrarily, since the degree of similarity is
actually identical.

Before the al orithm assigns this second pack type to the kth
sequencer, it verifies that the assignment of this pack type will not

violate the dispensing head limit (Ck)' nor volume capacity limit (Sk)'

of the kth sequencer. The algorithm adds the current number of

allocated heads (Hk) to the number of additional component tapes
required to be mounted to produce the selected pack type (b‘q). ¢
Hk + biq < Ck' -y

then sufficient, unallocated heads are available to produce this second
pack type on the same production run,

The algorithm adds the current productior value reuirement (PVE )
to the production value requirement of the selected pacr type (FVP‘W

[f

PVR, + PVR. < S, (5

th

then the volume capacity for the k sequencer wi'll nct be exceeded 1f

this second pack type 1s assigned to that sequencer on the sare

. . t
production run, [f the assignment of this second pack type to the & n

sequencer will, in fact, violate either the dispensing head Timit ({7,

or the volume capacity limit (S, ), the algorithm does not assign a

k
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second pack type to sequencer k, and begins scheduling sequencer k + 1
(for k =1 to L - 1). This particular event is exceptionally remote,
especially in light of the assumptions considered during the
development of this heuristic approach. However, the method by which
the algorithm treats this peculiar event is addressed in Section 4.3.4,
[f neither the dispensing head limit (Ck), nor the volume capacity

is violated, the algorithm assigns this second pack type

o
for production to the Kt sequencer. Immediately following this

limit (S

assignment, the algurithm performs its two customary bookkeeping
operations (Section 4.3.70.. "he procedure used to increment the
production volume requirement (PJQk) of the kth sequencer is identicai .

to that described in Section 4.3.0. The production volume requirement

of the second assigned pack type (Pv91> s added to the previous
. h .
production volume requirement of the Wt sequencer (DV?h“ to yield a

current value of PVRk, which reflects the assignment of the seconrd pace

type. L

PyR S L = bk ir
k,cari.ant k,previous R [

This incremental procedure, whicn ypdates the current producticn volume
, oo th
requirement (Pyk 1 of the & segquencer, 15 yutilized dentical’ly
throughout *the entire alqorithr, regardless 0! whether one, or two, or
) th
more than two pace types are as<igned to the & SPQUen er
The deviation 1n the boorkeeping operatton whi b computes the

th

current number of gllacated d1,pensing heads, P e the Se juBnges

occurs when the second, and nu'tiple pach types are 45519ned,.  When the




65

first pack type is assigned to the kth sequencer, the current number of
allocated dispensing heads (Hk) is exactly equal to the total number of
different component types required to produce that first assigned pack
type (refer to equation (2)). Whenever two, or more pack types are

kth sequencer on a particular production run, the

assigned to the
current number of allocated dispensing heads (Hk) equa's the sum of the
previous value of Hk’ and the number of additional component tapes
required to be mounted (biq) to produce the most recently assigned pack

type i.

(7)

Hk.CUrrent ) Hk,previous * biq

This incremental procedure, which updates the current number of

allocated dispensing heads (M on the kth sequencer when two, Oor more

W)
pack types are assigned, is utilized identically throughout the entire
algorithm, The deviation in this bookkeeping operation surfaces only
when the first pack type is assigned to the kth sequencer, in which

case H is calculated by equation (2).

4.3.4 Comparison Operation Following Assignment of Second Pack Type

Once the first and second pack types are assigned for production
to any of the L sequencers, the algorithm again searches for a most
similar, unassigned pack type. The first M rows of Array DIFFER are
of no use in this situation. The M*M portion of DIFFER contains
numerical entries indicating the degree of similarity between any two
pack types, of which only one is assigned. Obviously, when two, or

more pack types are previously assigned to the kth sequencer, those

entries are meaningless.
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However, in keeping with the strategy of this heuristic approach,

the algorithm must be capable of locating the unassigned pack type that

is most similar to the aggregation of pack types previously assigned to

the kth sequencer, for a particular production run. The last L rows of

the total M+L rows in Array DIFFER provide the algorithm with a tool to

accomplish this task. The entries in the last L rows of DIFFER are

computed only after the algorithm assigns two, or more, pack types to
the kth sequencer for a particular production run,

th

The numerical entries in the M+k~" row (for k = 1 to L) of Array

DIFFER indicate the degree of similarity between each, unassigned pack
type, and the aggregation of pack types previously assigned to the kth
sequencer, for a particular production run. In other words, the
numerical entries in the M+kth row represent the comparison of the
different component types required by each, unassigned pack type
against the union of different component types required to be mounted
on the kth sequencer in order to produce all of the pack types
previously assigned to that sequencer, for a particular production run.

The method by which the numerical entries in the last L rows of
Array DIFFER are generated is through a procedure involving a specific
comparison operation performed by the algorithm. The first step in
this procedure is to represent the union of different component types
required to produce all previously assigned pack types on the kth
sequencer, for a particular production run, in vector form. The
current number of allocated dispensing heads (Hk) indicates the total
number of different component types required to produce all of the

assigned pack types together. Recall that the input parameter N is the

bt Al al At Al
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total number of different component types. The algorithm establishes a
one-dimensional vector, which is N elements long. This vector, called
the U vector, is initialized with zeroes.

The algorithm scans the different component types required by all
pack types previously assigned to the kth sequencer for a particular
production run. Let Q represent the set of pack types which are

=1 (for i insetQ; j =1 to
th

already assigned to sequencer k. If aij
N), the algorithm places a value of 1 in the j element of the U
vector. By this method, the Hk different component types required to
produce all previously assigned pack types are represented by the U
vector. The only elements in the U vector with a value of 1 are those
elements corresponding to the different component types required by at
least one of the pack types assigned to sequencer k.

Once the U vector is established, corresponding specifically to
sequencer k for a specific production run, all remaining, unassigned
pack types are compared against it. In other words, the different
component types required to produce each, unassigned pack type are
compared against the different component types represented in the U
vector. This comparison operation is performed in a manner similar to
the comparison operation which generates the numerical entries in the
first M rows of Array DIFFER. Refer to Section 4.2.2.

The results of this comparison operation yield the numerical

entries in the M+kth th

row of Array DIFFER (corresponding to the k
sequencer for which the comparison was conducted). This comparison

operation is conducted every time another pack type is assigned to the
th

k

sequencer, starting with the second pack type. Therefore, the

Rl
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kth

numerical entries in the M+ row (for k = 1 to L) of DIFFER indicate

the degree of similarity between each, unassigned pack type, and the
current aggregation of pack types previously assigned to the kth
sequencer for a particular production run. In this manner, the
algorithm is always capable of selecting the most similar, unassigned
pack type as it schedules the L available sequencers.

The only case in which the algorithm does not perform this
comparison operation as it schedules the kth sequencer is in the remote
event that the first assigned pack type is the only pack type that can
be assigned to the kth sequencer for a particular production run., In
this event, since a second pack type is not assigned to the kth
sequencer, the numerical entries in the M + kth row of DIFFER would not
be needed for this first part of the algorithm; hence are not generated
by the comparison operation. However, since the second part of the
algorithm also utilizes the last L rows of DIFFER, we must calculate
these entries any way.

Recall that the numerical entries in the first M rows of DIFFER
indicate the degree of similarity between any two pack types.
Therefore, to generate numerical entries for the M + kth row of DIFFER,
the numerical entries for the M*kth row of DIFFER, given that thris
remote event occurs, the numerical entries in the ith row of the M*M
portion of DIFFER (corresponding to the single, first assigned pack
type i) are copied directly into the M*kth row of DIFFER (corresponding

to the ktM

sequencer toc which the single pack type i is assigned .
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4.3.5 Assignment of Remaining Pack Types to Sequencers
Kt

The M + row of Array DIFFER enables the algorithm to

repeatedly select the most similar, unassigned pack type as it

schedules the kth sequencer for a particular production run. The

algorithm Jlocates the most similar, wunassigned pack type by

specifically searching the M + kth

th

row of DIFFER, for k = 1 to L
(corresponding to the k sequencer currently being scheduled). The
algorithm selects the smallest numerical entry corresponding to an
unassigned pack type (0 is a possible entry). This smallest numerical

entry represents the unassigned pack type that is most similar to the

aggregation of all pack types previously assigned to the kth sequencer

for that particular production run.

The term for the individual numerical entries in the M + kth row

is bkq

identical to the definition of biq presented in Section 4.3.3, with one

(for k = 1 to L; g = 1 to M). The definition of bkq is

exception. This exception 1is that bkq indicates the degree of
similarity between the aggregation of all pack types previous'y
assigned to the kth sequencer for a particular production run, and pack
type q, which is unassigned. Recall that b,.d indicates the degree of
similarity only between pack type i and pack tvpe g.

Two items specific to the last L rows, COr _*M portior, o0 Ar-a,

*r

DiFFER, are briefly addressed. First, uniixe *ne *° row S0 v - 1 e
th . e
M), the M + &k row L tor ko= L te QY CLre N dien ror ey MU
numerical entries. r tact, the ot onuTher f ertrcal e s, e er
th . .
M s &k rom generatec Dby tnhe CTartsor CSperattoe e MR

. th . .
corresponding k SEJUEr(er 18 I1ryprge , Drapr vss o’ o eng s ey
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number of pack types assigned to all sequencers over all production

runs. The reason for this rather unremarkable occurrence is simple. A

th column (for q = 1 to M) of the M + kth row

numerical entry in the q
(for k = 1 to L) corresponds to an unassigned pack type q. As the
total number of assigned pack types increases, the total number of
unassigned pack types decreases, thereby decreasing the total number of
elements containing numerical entries.

The second item addressed is the method by wnhich the algorithm
breaks a tie when multiple unassigned pack types appear to be most
similar to the current aggregation of previously assigned pacr types

n

(multiple bkq's in the M « kt“ row:. The algoritnT mpiemerts tre

Highest Degree of Similarity HDCS' oprocedure b, performirg the

previously described computatiors S.amnpie 4.0 or the unasstanes raoe
types with a value of bkq 1rothat cartocLar Moe T e 0t e
Again, 1t a tie stril exists after tre S0 0 rrogedure Y oDdertoemer o

tie is broken arbitrartly,

Befare the a'glor thm as, 3rs ar 332 °cora’ syt pe e

seqgquencer, 11 verttips Trat trhe 3Ll grter sttt e e w
. . .
vigc.dte the grspersyn; heal e Lo e T e SRR
[
“ R e L TR T A A S T R
NN
3T ate! ALl e rey s ey R L. O

LY
th.; " \“.,:t"‘ SR}




71

If neither of these two equations is violated, the algorithm
assigns the pack type for production to the Kth sequencer. Immediately
foliowing this assignment, the algorithm performs its two customary

bookkeeping operations that we presented through equations (6) and (7)

‘Section 4.3.7,. we repea*t these equations here for ease of reference:
Dyk : FyR. . + PVR
' L lurrert ' k,previous q (6)
- = H » + b 7
R ourvert L L,OTeviIous kQ (7)

-

ne a'gorytnm ther performs tne comparison operation to update the

h
ramertoa’ entries or o the 3pproprogte Mo W row of DIFFER.

4]

“ne procedtures descrided in this section up to this point are

vert meed repedted . fcrox ot 0ot o, until the algorithm may no longer
: th .

o atIttting’ opacs tupes vl the sequencer. As mentioned

t o tne Componert type reguirements of the pack

T (roduc=Y oTrert be s,cn that 3] pack types are scheduled

R "
oo da ot rosre seeit ngve af the algerithm, In this case, the
ST T ype et s e, e ts completed, and the second part of

to s re,er o eyaed,  Jr tre other hand, if at this time
tov *,pes wWPY(n o are not yet assigned to the
Sorolr oty v otre algorttet proceeds with its second part.

Tre ot pars o ceesanatas tre scheduling process is in

LTSN .
e e ara et el v ane mrcduction run on]y, and
. . - - . - - th
e e LA SRR va ¢ ore sen,enced tape. The M + k row
S S T .t . arTiates the degree of similarity
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between each, unassigned pack type, and the current aggregation of all
pack types assigned to the kth sequencer for the first production run.

PVR, (for k = 1 to L) indicates the total number of component

kth

k

insertions that the sequencer must make in order to produce all of
its assigned corresponding sequenced tapes for the first production

run. Hk (for k = 1 to L) is reset to 0. The remaining sections of

this chapter pertain to the second part of the heuristic algorithm.

4.4 Heuristic Algorithm - Part Two

The sequenced tape assignment process in this second part

resembles much of what is previously outlined in the first part. The

purpose of this second part is to schedule all unassigned pack types

for production. The detailed description of this second part is

decomposed into five distinct segments. The first segment describes

the method by which the available sequencers are selected to make

multiple production runs. The second part describes the method by

which the first pack type is assigned to the selected sequencer. The

third segment describes two bookkeeping operations performed by the

algorithm after the first pack type is assigned. The fourth segment

describes the method by which the second pack type is assigned for

production and describes the comparison operation performed by the

algorithm after the second pack type is assigned. The fifth segment

describes the method by which remaining, unassigned pack types are

repeatedly assigned to the sequencers until all pack types are

scheduled, in which case the sequenced tape production schedule is

completed, and the algorithm terminates.




T
[

There is one unigue aspect to this secona part. FEvery time a4 pdce
type is assigned for production, the algorithm performs the customary
bookkeeping operations and immediately determines 1if any unassigned
pack types remain. In this manner, the algorithm may terminate as soon

as possible.

4.4,1 Selection of Seguencers for Multiple Production Runs

In this second part, the algorithm selects a sequencer to undergo
scheduling based on its current production volume requirement

(PVR ). The algorithm always selects that sequencer k (for k =

k,current
1 to L) that is required to make the fewest total number of component
insertions up to that stage in the planning horizon in order to produce
all of its previously assigned pack types over all production runs.

The logic behind this selection rule stems from the second of
management's two goals--maintain a relatively balanced workload
distribution. By selecting the sequencer with the smallest incurred
workload to make the next production run, the algorithm does not permit

any sequencer to stray too far from the other available sequencers in

terms of the total number of component insertions.

4.4.2 Assignment of the First Pack Type to Sequencers

There exists only one rule governing the selection of the first
pack type assigned to the sequencer with the smallest production volume
requirement (PRVk). This rule, the 'most common' rule, is in keeping
with the strategy of the heuristic approach, and is discussed in
Chapter 5. Pack types have already been scheduled on each of the L

available sequercers in the first part. The algorithm attempts to

A N R N R D RN R |
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assign pack types together on the same sequencer based or their high
degree of similarity.

Therefore, the algorithm locates the most common, unassigned pack

h row of DIFFER, for k = 1 to

type by specitically searching the M + Kt
L (corresponding to the Kth .equencer currently being scheduled).
Obviously, one of the definitions of common corresponding to one of the
three different heuristic procedures affects the method by which the
algorithm selects the unassigned first pack type. By searching the M +
kth row of DIFFER, the algorithm locates the unassigned pack type that
is most common to the current aggregation of all pack types on the kth
sequencer assigned for the production run most recently scheduled. If

a tie exists, the HDOS procedure is implemented as described in Section

4.3.5. If a tie still exists after that, it is broken arbitrarily.

4.4.3 Bookkeeping Operations After Assignment of Pack Types

The two bookkeeping operations performed after the first pack type
is assigned for production are also performed in the first part. The

th sequencer being

production volume requirement (PVRk) of the k
scheduled is a cumulative total over all production runs, and is
incremented by the production volume requirement of the first assigned
pack type i. Equation (6), Section 4.3.3, is utilized to update the

current total workload:

PVR PVR + PVR, (6)

k,current = k,previous i

The number of allocated dispensing heads (Hk) is incremented from
0 to the total number of different component types (bi) required to

produce that first assigned pack type i. Equation (2), Section 4.3.2,

NG
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is utilized to update Hk:
Hk,current ) bi (2)
Immediately after computing PVRk current and Hk current’ the algorithm

determines if any pack types are still unassigned. If this 1is the

case, the algorithm continues. If not, the algorithm terminates.

4.4.4 Assignment of the Second Pack Type to Sequencers
and the Following Comparison Operation

The operations performed to select the second pack type assigned
to the kth sequencer being scheduled are identical to the operations
described in Section 4.3.3, with one exception. In this second part,
only equation (4) is pre-computed to determine if a second pack type
may be assigned. The reason why equation (5) is not pre-computed is
because a sequencer volume capacity limit (Sk) is not imposed on the
sequencers in this second part. The sequencer being scheduled is
selected based on its smallest total production volume requirement
(PVRk) in comparison to the other sequencer production volume
requirements.

This second part does not guarantee that every sequencer will make
the same number of production runs, as in the first part. At some
point in time, all of the pack types will eventually be scheduled for
production. Because of this uncertainty, the sequencers are permitted
to produce as many sequenced tapes as possible until an insufficient

number of unallocated heads exists, at which time the algorithm selects

the next sequencer for production, if required.
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As usual in this second part, the algorithm updates the number of
allocated dispensing heads (Hk), and the production volume requirement
(PVRk). The algorithm then determines if any unassigned pack types
still remain. If unassigned pack types still remain, the algorithm

performs the comparison operation as described in Section 4.3.4.

4.4.5 Assignment of Remaining Pack Types to Sequencers
K th

The M + row of Array DIFFER enables the algorithm to

repeatedly select the most similar, wunassigned pack type as it
K Eh

schedules the sequencer for a multiple production run. The
process by which the algorithm selects the remaining, unassigned pack
types, and selects the sequencer to be scheduled for multiple
production runs in this second part, is as described in Sections 4.4.1
through 4.4.4.

The algorithm repeatedly performs these operations on the kth
sequencer (for k = 1 to L) until either all pack types are assigned, or
until the dispensing head limit (Ck) is approached, but not violated.
In the case where the dispensing head limit (Ck) prevents additional
pack types from being assigned to the kth sequencer, and not all pack
types have been assigned, the algorithm selects some sequencer k for
another production run based on its smallest incurred production volume

requirement (PVRk). In the case where all pack types are assigned, the

production schedule is completed and the algorithm terminates.

'''''
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CHAPTER 5
THREE HEURISTIC PROCEDURES

5.1 COMMON Pack Types

The three heuristic procedures developed to provide a solution to
the sequencer sthedu]i#g/assignment problem differ in only one respect.
Each heuristic procedure enlists a distinct definition of the term
common. Otherwise, the specific algorithm followed by the three
heuristic procedures is identical to that described in Chapter 4. The
purpose of manifold definitions of the term common serves to establish
different relationships between the component type requirements of the
individual pack types.

Recall that the algorithm adheres to the strategy of assigning
similar pack types to the same sequencer. It separates pack types with
little in common, in terms of component type requirements, by assigning
them to different sequencers. It is previously explained in Section
4.2.1 that, with the exception of the very first pack type selected by
the starting rule, the first pack type assigned to the kth sequencer
(for k = 1 to L), for all production runs, is selected by incorporating
one of three definitions of common. The method by which the first
assigned pack type is selected in the first part of the algorithm is

via the 'least common' rule. The logic supporting this rule is

discussed in Section 4.3.1. The method by which the first assigned

pack type is selected in the second part of the algorithm is via the

'most common' rule. The logic supporting this rule is discussed in

Section 4.4.2. To emphasize, the only situation where the term common
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is incorporated is when the algorithm is selecting the first pack type
assigned to sequencers in both parts.

A11 three definitions of the term common are related to the
definition of the term similar. The operations conducted to determine
the three common relationships between pack types are performed simply
by manipulating the numerical entries indicating the degree of
similarity between pack types in Array DIFFER. The three definitions
of common are explained in the following sections and the operations
performed to determine the common relationship between pack types is
described. The final section of this chapter demonstrates the methods

by which the 'least common' rule is implemented.

5.2 Definitions of COMMON

As mentioned earlier, the three definitions of common are related
to the definition of similar. The precise definition of the term
similar is presented in Section 4.2.1. In short, the degree of
similarity between an unassigned pack type and the assigned pack
type(s) is determined by the number of additicnal, different component
tapes that must be mounted to produce all of the pack types together.
An unassigned pack type is most similar to the aggregation of assigned
pack types on a particular sequencer if the number of additional,
different component tapes that must be mounted to produce them together

is the fewest number possible.

5.2.1 Most SIMILAR, Most COMMON

The first definition of common is the identical definition of

similar. This definition of common is related to the number of

T 1 T g W TN VLT gty B g NS T O,
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additional, different component tapes that must be mounted in order to
produce each, unassigned pack type together with previously assigned
pack types.

When the algorithm searches for the least common pack type in the
first part, it searches over all previously scheduled sequencers to

locate the least common, unassigned pack type with respect to the

component type requirements of all previously assigned pack types. The
method by which the aigorithm is capable of doing this is described
later in Section 5.3.

When the algorithm searches for the most common pack type in the
second part, it simply searches the appropriate M + kth row
(corresponding to the kth sequencer selected to be scheduled) which
reflects the current aggregation of all pack types previously assigned
for the most recently scheduled production run.

With this definition of common, the smallest numerical entry in

kth

the M + row represents the most common, unassigned pack type, while

the largest numerical entry represents the least common, unassigned

pack type. If the algorithm locates multiple numerical entries that
qualify as least common in the first part, or most common in the second
part, the HDOS procedure is implemented. I[f a tie still exists, it is
broken arbitrarily. This definition of common is incorporated in the

heuristic procedure named YFIX.

5.2.2 Least SIMILAR, Most COMMON

The second definition of common is the exact inverse of the
definition of similar. This definition of common is related to the

number of different component types that are required by each,
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unassigned pack type and by the aggregation of previously assigned pack
types.

When the algorithm searches for the least common pack type in the
first part, it searches over all previously scheduled sequencers with
respect to the component type requirements of all previously asstigned
pack types. When the algorithm searches for the least common pack
type 1in the second part, 1t simply searches the M Kt row
(corresponding to the lth sequencer selected to be scheduled!.

With this definition of common, the numerical entries generated by
the comparison operation must be manipulated to estabitsh the correct
common relationship. The algorithm subtracts the entries in the
elements of the appropriate M -« ith row of UlEPE- corresponding to
unassigned pack types from the total number 0° diféerent component

A d

types (b.) required by each, unassigned pack type. The result'ng

i
values indicate the number of different component types required by
each, unassigned pack type which are also regyuired by the aggregation
of pack types previously assigned. These resulting values are inserted
back into the elements of the M « kth row.

With this definition of commoi, the smallest numerical entry in
the M ¢ Kt row represents the least common, unassigned pack type,
while the largest numerical entry represents the most common,
unassigned pack type. [f the algorithm locates multiple numerical
entries that qualify as least common in the first part, or most common

in the second part, the HDOS procedure is implemented. If a tie still

exists, it 1is broken arbitrarily. This definition of common is

incorporated in the heuristic procedure named V2YFIX.

Bt e
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5.2.3 COMMON Pack Types Determined as Proportions

This final definition of common seeks to eliminate an inherent
deficiency in the first two definitions of common. The deficiency in
those two definitions is that the algorithm searches specifically for

th row to

either the largest or smallest numerical entry in the M + k
Tocate either the most or least common unassigned pack type, depending
on whether the algorithm is in its first or second part.

These two definitions do not take into account the total number of
different component types required by each unassigned pack type (bi)'
It is this precise deficiency that requires the existence of a

tie-breaking procedure such as the HDOS procedure. This deficiency is

demonstrated by an example.

EXAMPLE 5.1

Suppose that the scheduling process is in the following state:

L =1 available sequencer.

K 4
"

4 pack types to be produced.

=
n

12 total different component types.

Sndedudabd Sl ol b dak

Ck = 10 dispensing heads.

Assume that the YFIX heuristic procedure is being used, and the
algorithm just terminated the first part. In that first part, it
assigned two pack types (packs 1 and 3) for production. The total

number of different component types (bi) required by the four pack

types are 7, 5, 6, and 9, respectively. The numerical entries in the M

+ kth

row generated by comparison operation are as follows:




M+ k" Row [-‘zl-'sl

The algorithm initiates the second part by scheduling the one
available sequencer for a second production run. The algorithm

searches the M + kth

row to locate the most common, unassigned pack
type in order to assign that pack type first for the second production
run. Hash marks are in the row elements of pack types 1 and 3 because
they were assigned for production in the first part. Since the YFIX
heuristic procedure is being used, the most common, unassigned pack

type is that pack type with the smallest numerical entry in the M + kth

row. Manipulation of the entries in the M + kth

row are not required
because the YFIX definition of common is identical to the definition of
similar.

Therefore, the algorithm selects pack type 2 as most common, sincec
it is the unassigned pack type with the smallest numerical entry (2).
Some computations reveal, however, that pack type 4 is really more
‘coomon' to the aggregation of pack types 1 and 3.

Since 2 is the entry corresponding to pack type 2, this indicates
that three component types required by pack type 2 are also required by
the aggregation of pack types 1 and 3 together. Therefore, three of
five, or 60% of the component types required by pack type 2 are also

required by pack types 1 and 3 together.

Since 3 is the entry corresponding to pack type 4, this indicates

that six component types required by pack 4 are also required by the




aggregation of pack types 1 and 3 together. Therefore, s1t ¢cf nine, ~r

67 of the component types required by pack type 4 are alsc reguirecd b,
pack types 1 and 3 together.

It is evident that pack type 4 has a nhigher proportion of
different component types in ‘common’ with pack types | and 1 together.
However, the algorithm does not consider this situation with erther tre
YFIX or V2YFIX definitions of common.

Therefore, the final definition of common determines the
proportion of component types required by each, unassigned pach type
with respect to its total number of different component types (b,].

The algorithm performs this manipulation simply by dividing the
ith entry of the M + kth row by the total number of different component
types required by each pack type 1, bj, for each unassigned pack type,
i =1 to M. The algorithm inserts these proportion results back into
the M + k™ row. With this definition of common, the smallest

proportion in the M + kth

row represents the most common, unassigned
pack type, while the largest proportion in the M + kth row represents
the least common, unassigned pack type.

The reason why the smallest proportion represents the most common,
unassigned pack type is because the numerical entries in the M + kth
row generated by the comparison operation indicate the number of
different component tapes that must be additionally mounted to produce
each, unassigned pack type, and the aggregation of previously assigned

pack types together. This definition of common is incorporated in the

heuristic procedure named PROYFIX. In the PROYFIX heuristic procedure,

the HDOS procedure is not necessary. If the algorithm locates multiple

Po” ™
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part, ar fu77 accordance witn the strateg, 0f the heuristic approach.
The 'east common pack type 1. selectel with respert to all previous’y
as513nec  pact  types or ai’ previocus 'y assigned seguencers., This
procedure s accomplishec through the use of a one-dimensional array,
named Array H(LT. The operations performed to utilize Array HOLD,

which 1s M elements long, are identical regardless of which definition

of common is incorporated.

After the algorithm completely schedules the first sequencer, the
numerical entries in the M - ISt row, generated by the comparison
operation, indicate the degree of similarity between each, unassigned
pack type and the final aggregation of all pack types assigned to that
first sequencer. These numerical entries are manipulated accordingly,
based on the heuristic procedure being utilized, and inserted into the

corresponding elements of Array HOLD.

To locate the least common, unassigned pack type with respect to

the final aggregation of pack types assigned to the first sequencer,
the algorithm specifically searches Array HOLD. Once it locates the
least common, unassigned pack type, the algorithm assigns it to the
second sequencer, and performs the operations described in Sections
4.3.1 through 4.3.5 to completely schedule the second sequencer. The

comparison operation generates numerical entries in the M + an row
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indicating the degree of similarity between each, unassigned pack type,
and the final aggregation of all packs assigned to the second
sequencer.

To locate the least common, unassigned pack type, for assignment

to the third sequencer, with respect to the final aggregation of pack
types previously assigned to the first and second sequencers, the
algorithm would have to search Array HOLD and the M + 2" row of
DIFFER, whose numerical entries are appropriately manipulated based on
a definition of common.

The algorithm avoids this situation, however, by comparing the

nd row of

corresponding numerical entries in Array HOLD and the M + 2
DIFFER. The algorithm compares the numerical entries in the elements
corresponding to the unassigned pack types, and locates that numerical
entry that is indicated to be the most common of the two. The
algorithm inserts the most common numerical entry in the corresponding

element of Array HOLD. Thus, Array HOLD now contains the numerical

entries indicating the most common relationship between each,

unassigned pack type, and the final aggregation of previously assigned
pack types over the two previously scheduled sequencers.

The algorithm then searches Array HOLD and locates the least
common, unassigned pack type indicated by the individual numerica’
entries. In this manner, the algorithm, in fact, selects the ‘'w..°
common, unassigned pack type to be scheduled first or ¢
sequencer.,

This procedure is performed every time *tne al: r-*»

schedules a sequencer, until all _ avetlar e o
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Array HOLD always contains the most common numerical entries over all
previously assigned pack types over all previously scheduled

sequencers. By locating the least common, unassigned pack type in

Array HOLD, the algorithm is, in fact, locating the least common pack

type with respect to all previously assigned pack types, over atl

previously scheduled sequencers.




CHAPTER 6
NUMERICAL RESULTS AND CONCLUSIONS

Chapters 3 through 5 provide a detailed description of the
sequencer scheduling assignment problem, and our proposed heuristic
procedure for golving it. In this chapter we present the results of
some numerical experiments with these procedures.

This specific variation of the sequenced tape production
scheduling problem is very complex in nature, and as such, is not even
particularly well defined. We stated earlier that an ‘'optimal'
solution to this problem would be difficult to obtain, even for the
relatively simple case where only one sequencer is involved. The case
with more than one sequencer is increasingly more difficult.

Ideally, we would like to compare the schedules obtained using
this heuristic approach on a particular set of problems with their
respective 'optimal' schedules. In the absence of a methodology to
obtain, or even properly define, such an optimal schedule, however, it
would not be possible for us to do so. Hence, in this study, we limit
our discussion to a subjective analysis of the performance of this
approach.

The measures of goodness described in Chapter 3 provide some
reference by which different heuristic procedures may be compared with
each other. These measures of goodness serve to gauge the relative
merits of the three heuristic procedures, but they are subject to
interpretation. It cannot be accurately stated, for instance, that a

production schedule requiring each of three sequencers to make two

change-overs apiece is categorically better, or worse, than another
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production schedule, devised for the same problem, which requires that
the same three sequencers each make one, two, and three change-overs,
respectively.

The nature of the sequencer scheduling/assignment problem is such
that it does not have a reacdily apparent structure. It is for this
precise reason that the development of an approach which provides a
satisfactory solution is so frustrating. The purpose of this heuristic
approach is to create an adequate form of structure by which a sensible
solution may be obtained.

The framework of the experiment phase incorporating the three
heuristic procedures reflects this lack of analytical certainty. The
method by which the heuristic procedures are validated serves to
demonstrate that the algorithm described in Chapter 4, in fact,
functions very nicely, and that the resulting production schedules
devised for numerous problems are reasonable in light of management's
two production goals. Some trends are observed as various sets of
input parameters are introduced.

The computer programs for the three heuristic procedures are
written in FORTRAN, and run on a VAX 11/750 computer. A listing of the
YFIX heuristic procedure is included in Appendix 8.2. The simulated
data set pertaining to the pack type component requirements closely
resembles actual data for a production environment involving two
sequencers.

The next two sections contain discussion related to the experiment
phase of the three different heuristic procedures, and present summary

computational results.



BER NN AR Y

LI [ ] - e “4 - B TR UL Taa"w

89

6.1 Typical Problems in a Sequencing Environment

The set of simulated data used in conjunction with the numerica’
experiments is typical of a sequencing environment in which the total
number of different component types required by each pack type, in most
cases, does not exceed 60 (bi’ for i =1 toM). In fact, a good number
of pack types in this data set require a relatively low number of
different component types (less than 20). For this reason, no more
than two sequencers are generally required for the production of their
corresponding sequenced tapes.

Six typical problems are solved, with the number of pack types to
be produced ranging in number from 20 to 40. These six problems are
solved by all three heuristic procedures. The number of dispensing
heads on the two available sequencers (Ck) is originally fixed at 60.
When a resulting production schedule requires a change-over at this
figure, Ck is increased to 100 (a more typical limit). This type of
reaction to imminent sequencer change-overs realistically reflects the
position of management in their quest for efficient production
operations.

Additionally, the sequencer volume capacity (S of both

K
sequencers is calculated according to equation (1) in Section 2.3.
Throughout these numerical experiments, we calculate the 'constant'
term in that equation as a percentage of the total production volume.
We let this percentage vary from 5% to 25% in solving the six problems.

This parameter 1is altered to empirically observe the degree of

sensitivity of the heuristic procedures to these volume constraints.
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The numerical results are presented in Tables 6.1 through 6.6--one
table for each problem. The key to deciphering the tables is described
as follows.

The upper 1left hand corner indicates the number of available
sequencers (L); and the total number of pack types scheduled for
production (M). The number of dispensing heads fixed for each
particular problem is listed in the Ck column alongside the name of the
heuristic procedure used to solve that problem. Three different
percentages used in the calculation of Sk are presented in the column
headed ‘Sk.' A value of 5% restricts the problem, while a value of 25%
relaxes the problem. The five measures of goodness described in
Chapter 3 are presented in columns 1 through 5 under 'Measures of
Goodness."'

The total number of sequencer change-overs for a given problem is
represented in column 1. The total number of component tape changes
required by all sequencers in a given problem is given in column 2.
The total sequencer production volume requirements are in column 3,
with each entry corresponding to one sequencer. The multi-tiered
entries in column 4 represent the total number of different component
types required by each sequencer to produce all of their assigned
sequenced tapes. Each entry corresponds to one sequencer. The
multi-tiered entries in column 5 represent the total number of
'dedicated' heads on each sequencer. A block marked by a single
hash mark indicates that all available sequencers required only one
production run to produce all of their assigned sequenced tapes.

Therefore, all of the allocated heads could be considered as




Table 6.1 Problem 1
L=2 M=20 Measures of Goodness crPU
Ck Sk 2 3 4 5 (sec)
5% o 158 180 13 _ 2.81
35 :
YFIX 60  10% 0 202 136 ;g - 2.52
25% o 248 90 29 . 2.54
23
5% o 158 180 13 . 2.51
(] 35 .
V2YFIX 60  10% 0 202 136 ;g - 2.45
259 o 248 90 29 . 2.59
23
. 13
: 0 158 180 i - 2.48
PROYFIX 60  10% 0 202 136 ;g - 2.54
257 o 248 90 29 . 2.58
33
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Table 6.2 Problem 2
L=2 M=20 Measures of Goodness CPU
Ck Sk 1 2 3 4 5 (sec)
5% 1 17 a8 280 3 19 2.59
YFIX 60  10% 0 0 412 336 gg - 2.61
259 0 0 412 336 gg - 2.65
5% 122 a6 32 3% 3 2.57
V2YFIX 60  10% 0 0 412 336 gg - 2.67
25% 0 0 412 336 gg - 2.60
5 1 17 468 280 53 0 2.6
PROYFIX 60  10% 0 0 412 336 gg - 2.58
259 0 0 412 336 gg - 2.63
YFIX 100 5% 1 17 a8 280 55 1O 2.60
V2YFIX 100 5% 1 22 a6 332 5 O 2.61
PROYFIX 100 52 1 17 468 280 g; 10 2.59
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Table 6.3 Probliem 3
L=2 M =30 Measures of Goodness CPU
¢ S 1 2 4 (sec)
. 50
5% o o 58 412 3 .96
YFIX 60  10% 0 0 538 472 ig .86
) 50
257 o o s 412 Y .89
50
5% 0 o s 472 Y .94
V2YFIX 60  10% 0 0 538 472 zg .90
\ 50
25% 0o o 58 472 0 .93
. 50
5% 0 o 58 472 9 .89
PROYFIX 60  10% 0 0 538 472 Zg .93
50
0o o s 472 0 .00

- . - - g - -
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Table 6.4 Problem 4

2

=
n

L 30 Measures of Goodness cPU

70 15

V2YFIX 60 10% 2 30 640 750 24 9

o 58 -
PROYFIX 60 10% 1 31 498 892 89 16 5.76

continued
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Table 6.4 (continued)
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L=2 M =30 Measures of Goodness cPU
Ck Sk 2 3 4 (sec)
. 77
2 0 722 668 1 6.08
YFIX 100 10% 0 722 668 ;g 5.83
25 0 1024 366 gg 5.97
. 77
5% 0 722 668 6.00
V2YFIX 100 109 0 722 668 ;g 6.03
] 94
25% 0 1024 366 9 6.13
o/ 77
% 0 722 668 1 6.15
PROYFIX 100  10% 0 722 668 ;g 5.85
257 0 1024 366 24 5.95
25
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Table 6.5 Problem 5
L=2 M= 40 Measures of Goodness cPU
Ck Sk 2 4 5 (sec)
5% 14 1010 1106 29 - 10.45
g 78 29 :
YFIX 60  10% 14 1010 1106 23 - 10.39
10 74 29 3
257 14 1010 1106 29 - 10.37
g 70 29 :
5% 19 1010 1106 22 - 10.52
b 74 35 :
V2YFIX 60  10% 19 1010 1106 29 - 10.45
74 35 :
253 19 1010 1106 27 - 10.40
' 78 35 -
57 19 1010 1106 29 - 10.38
- 74 35 :
y 59 -
PROYFIX 60 102 19 1010 1106 55  ,; 10. 30
25: 19 1010 1106 39 0.32
- 74 35 10.3

continued
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Table 6.5 (continued)

L=2 M =40 Measures of Goodness CPU
Ck Sk 1 2 3 4 5 (sec)
) 72
5% 0 0 1076 1040 /2 - 10.65
YFIX 100 10% O 0 1076 1040 ZS - 10.71
. 88
259 0 0 1572 544 5 - 10.78
) 72
57 0 0 1076 1040 fS - 10.43
V2YFIX 100 10% 0 0 1076 1040 gs - 10.59
257 0 0 1572 544 §§ - 10.78
) 72
5 o o 1076 1040 [Z - 10.57
PROYFIX 100  10° 0 0 1076 1040 gg - 10. 46
25" 0 0 1572 544 gg - 10.84
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Table 6.6 Problem 6

L=2 M =40 Measures of Goodness CPU
Cp Sy 2 4 5 (sec)
5% 19 1008 1020 o5 31 10.16
YFIX 60 10 19 1008 1020 S5 31 10.04
254 19 1008 1020 55 31 1032
5% 17 108 980 > 37 10.28
V2YFIX 60  10% 17 1088 980 > 3 10.23
25% 17 1048 980 5 3% 1033
% 17 1048 980 > 3 0.
PROYFIX 60  10% 17 1048 980 [5 3% 1033
25% 17 1048 980 > 3 1026

continued
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Table 6.6 (continued)
L=2 M =40 Measures of Goodness CPU
Ck ) Sk 1 2 3 4 5 (sec)
62
5% 0 0 982 1046 oo - 10.30
YFIX 100 10% 0 0 1182 846 g; - 10.27
) 70
257 o o 1310 718 79 - 10.56
) 62
5% 0 0 982 1086 o - 10.30
VOYFIX 100 10% 0 0 1182 846 ?; - 10.46
. 70
252 o o 1310 718 19 - 10.36
\ 62
2 0 0 982 1086 o - 10.34
PROYFIX 100  10% 0 0 1182 846 g; - 10.28
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'dedicated,' which is a moot point. A block in column 5 with a
combination of numerical entries and hash marks indicates that some of
the available sequencers make only one production run, while other
sequencers make two or more. The CPU time column is self-explanatory.

Several observations based on the numerical results in these
tables are addressed. First, all of the CPU times are extremely
reasonable. Even when the largest typical problems are run (M = 40),
the CPU time does not exceed 11 seconds. Another observation is that
many of the production schedules are identical for a given problem,
regardless of which heuristic procedure is used. This is easily
distinguishable by observing that all of the numerical entries are the
same for a given problem over all three procedures.

Two of the problems result in production schedules that do not
require any change-overs, regardless of the computed volume capacity,
when the dispensing head limit (Ck) is set at 60 (Tables 6.1 and 6.3).
Table 6.2, however, illustrates a situation where the computed volume
capacity greatly affects the production schedule. Notice that the
three procedures are run twice with a restricted volume capacity
constant (5%). When 10% and 25% are inserted, 60 dispensing heads are
sufficient to produce all of the assigned pack types without requiring
a change-over.

Even with 100 dispensing heads, this particular problem required
one sequencer change-over with the volume capacity constant set at 5.
This type of result indicates that managerial policy, with respect to
efficient production operations, ought to consider the distribution of
total workload as a contributing factor, possibly more so than an

increase in the number of dispensing heads.
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The final observation pertains to the relationship, or lack
thereof, between the volume capacity constants and the balance of
workload distribution across the sequencers. The great majority of the )
resulting production schedules reflect that the distribution of
workload remain$ relatively balanced, regardless of the volume capacity i
constant (up to 25%). Obviously, a higher volume capacity constant ;

could affect the outcome.

- -

6.2 Specifically Difficult Problems in a
Sequencing Environment

In order to exercise the algorithm completely, numerous large
problems were concocted. Pack types were selected for these problems
based on their large number of total different component types (bi)
required for production. The logic supporting this plan is that it

. P -~

seems reasonable to assume that pack types with large bi values will E
tend to be more diversified with respect to their component :
compositions.

Tables 6.7 and 6.8 contain the numerical results corresponding to
two selected problems. These two problems are quite typical of all

problems we have solved in this category, and the results obtained are

quite similar.
Table 6.7 presents a large problem consisting of 35 pack types.
The numerical results in this table reflect only those production

schedules devised with a volume capacity -onstant (Sk) of 10%. This is

the most typical of the three constants used, and it illustrates the
problem adequately. Each procedure solved this particular problem with

dispensing head limits set at both 60 and 100. In addition, each

procedure solved this problem with 2 and 3 available sequencers. K
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Table 6.7 Problem 7
Measures of Goodness
M= 35 CPU
Ck Sk 2 3 4 5 (sec)
) . 96 23
L=2 60 10% 226 4032 3428 ge 2 1.1
100 10% 66 4026 3434 lzg 5 7.84
YFIX
95 16
L=3 60 10% 205 2608 2760 2092 132 1 6.99
84 21
85 -
100 10% 30 3166 1832 2462 100 - 7.43
122 40
) 111 15
L=2 60 10% 238 3480 3980 lis ‘o 6.96
100 10% 60 4026 3434 lzg 5 1-67
V2YFIX
92 13
L=3 60 10% 216 2318 2284 2858 131 2 6.94
114 4
85 -
100 10% 28 3166 1466 2828 96 - 7.41
126 45

continued
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Table 6.7 (continued)
Measures of Goodness
M= 35 CPU
Ck‘ Sk 2 3 4 5 (sec)
) , 107 16
=2 60 10% 227 3484 3976 1 o 7.01
100 10% 60 4026 3434 123 5 7.60
PROYFIX
91 24
L=3 60 10% 196 2586 2420 2454 137 1 6.89
81 18
85 -
100 10% 45 3166 2788 1506 141 45 7.50

87
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|
| Table 6.8 Problem 8
|
Measures of Goodness
M = 40 CPU
Ck Sk 1 2 3 4 5 (sec)
52 3 94 5186 4342 %gg gg 10.36
YFIX 100 109 3 94 5186 4342 iég gg 9.98
L=2 254 3 94 5186 4342 %gg gg 9.98
5% 3 105 5030 4498 119 53 1015
V2YFIX 100 10%2 3 105 5030 4498 izg g; 10.14
_ ) 130 61
L=2 25 3 105 5030 4498 129 53 10.32
% 3 105 5030 4498 izg g§ 10.11
PROYFIX 100 10% 3 105 5030 4498 {28 gg 10.14
L=2 252 3 105 5030 4498 %28 g; 9.72
continued
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Table 6.8 (continued)

Measures of Goodness

= 40 CPU
Ck’ Sk 2 3 4 5 (sec)
89 -
5% 61 3594 3308 2626 152 10.03
99 -
93 -
YFIX 100 10% 48 3960 2462 3106 136 63 9.99
106 28
99 -
L=3 25% 66 4222 3336 1970 140 29 10.09
96 -
89 -
5% 70 3594 2336 3598 133 56 10.05
132 53
93 -
V2YFIX 100 10% 67 3960 2336 3232 133 56 9.88
129 54
99 -
L=3 25% 70 4222 2174 3132 131 55 10.39
121 52
89 -
5% 71 3594 3944 1990 140 55 9.82
121 58
93 -
PROYFIX 100 10% 67 3960 2336 3232 133 56 10.01
129 54
99 -
4222 2512 2794 140 51 10.12
129 49

---------
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The interesting aspect of this problem is the fact that a strict
increase in the number of sequencers does not necessarily result in a
much more efficient production schedule. A large reduction in the
total number of change-overs (column 1) occurs when the number of heads
on the currently available sequencers increases. Merely introducing
another sequencer into the situation does not appear to reduce the
number of change-overs substantially.

The problem represented in Table 6.8 enforces the issue broached
by the problem in Table 6.7. This particular problem serves to reveal
that every production schedule devised for this problem has
approximately the same total number of change-overs because the number
of dispensing heads for each sequencer is fixed at 100. Regardless of
the computed volume capacity alterations (Sk = 5%, 10% and 25%), or the
number of sequencers available for production (L = 2 and 3), the number
of change-overs only reduces from three to two. This small reduction
is in stark contrast to the substantial reduction brought about by
increasing the number of dispensing heads on the currently available

sequencers in Table 6.7.

6.3 Conclusions
As mentioned earlier in this chapter, the purpose of this
heuristic approach is to provide some sort of reasonable solution to
the sequencer scheduling/assignment problem. This heuristic approach
attempts to make sense out of a difficult problem (in this case, a

variation of the sequenced tape production scheduling problem that is

not well defined).
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It appears that this approach does provide some structure to the
problem. Indeed, given a particular problem from the set of simulated
data, production schedules are devised that attempt to make the total
amount of change-over time small and maintain a relatively balanced
workload distribution. In this respect, the algorithm performs very
well.

The algorithm does schedule all pack types to be produced for a
particular problem, and it does so in a reasonable amount of CPU time.
It is easily envisioned that a production supervisor could utilize
these procedures prior to a planning period, and, in a short time span,
determine a production schedule in order to produce all pack types in
a reasonally efficient manner.

The algorithm performed well on large sets of data. Recall from
Chapter 2 that the Fathi/Taheri IP model required roughly 46 minutes to
solve an incredibly small problem. Overall, the heuristic algorithm
does do what it is intended to do.

A final conclusion relates to the three different heuristic
procedures. As evidenced by the numerical results in the tables,
production schedules devised by the three procedures for the same
problem vary little, if at all. This indicates that the different

definitions of the term common may not be so different from each other.

This fact is not alarming in that there are only so many ways by which

to compare pack types to each other.

6.4 Avenues for Further Research

It is clear that the sequenced tape production scheduling problem

is combinatorial in nature and, as such, is riddled with nuances that
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are not well explained. A vital key for success to more efficiently
confront this problem is to achieve a better definition of the problem.
Until a better understanding of this particular problem is ascertained,
individuals faced with this problem are at a decided disadvantage.

With respect to the heuristic approach developed for this probiem,
a further investigation into this type of approach may result in even
better strategies. Because of the fact that a heuristic solution
cannot be compared to an ‘'optimal' one, the relative merits of a
heuristic approach are difficult to determine.

Other measures of goodness can be identified in order to develop
more reliable heuristic procedures. This area stems back to the not
particularly well-defined problem of realizing when an optimal solution
is achieved. In this case, we don't know how close we are, or how
close we can get. The single most intriguing aspect of the sequenced
tape production scheduling problem is that its structure is not readily
apparent. When the exact structure of this problem is understood, a
smoother, more straightforward path towards achieving an optimal
solution will be much more accessible. A practical approach for
accompiishing this is to conduct many more numerical experiments. In
this manner, the mechanisms which cause the algorithm to perform in a
certain way may be intensely scrutinized. Different strategies which
might favorably impact on the efficiency of the algorithm could also be

investigated.
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APPENDIX 8.1 MATRIX GENERATOR FOR LINDO

(22332 23 23 S R S R R 2R3 R 2 2 S R SR R R R R S R R R RS R R RS R R 2 2 2

THIS MATRIX GENERATOR SUBROUTINE FORMULATES THE FATHI/TAHERI
INTEGER PROGRAMMING MODEL OF THE SEQUENCER ASSIGNMENT PROBLEM.
THIS SUBROUTINE NAME IS 'USER’.

ERER AR ARRA R AR RN R AR AR AR AR R KR AR AR R R AR SRR R SRR AR SRR R R AR AR RS
VARIABLE DEFINITION:

VNAME- 8 ELEMENT INTEGER ARRAY CARRYING DESCRIPTION OF VARIABLES.
IVAR- INTEGER VARIABLE THAT KEEPS COUNT OF THE NUMBER OF DECISION
VARIABLES GENERATED BY THE FORMULATION.
NONZ- INTEGER VARIABLE DENOTING THE NUMBER OF TIMES A PARTICULAR
DECISION VARIABLE WILL APPEAR IN A FORMULATION.
VAL- 42 ELEMENT REAL ARRAY CARRYING ALL COEFFICIENTS OF ANY
PARTICULAR VARIABLE.
IRO- 42 ELEMENT INTEGER ARRAY CARRYING ALL OF THE ROWS IN WHICH ANY
PARTICULAR VARIABLE WILL APPEAR IN THE FORMULATION. ARRAYS
VAL AND IRO CORRESPOND SO THAT THE COEFFICIENT OF VARIABLE
Xjk STORED IN VAL(1) WILL APPEAR IN ROW IRO(1).

ALFANM- 36 ELEMENT INTEGER ARRAY CARRYING THE DIGITS O THRU 9 AND
THE 26 LETTERS OF THE ALPHABET.

A- AN M*N MATRIX ASSOCIATING COMPONENT TYPE j TO PACK TYPE i.

A ’1’ DENOTES THAT COMPONENT TYPE j IS REQUIRED ON PACK TYPE i;
A 'O’ DENOTES THAT IT IS NOT REQUIRED. i = 1...M; j = 1...N.

B- A 40 ELEMENT INTEGER ARRAY STORING THE TOTAL NUMBER OF DIFFERENT
COMPONENT TYPES REQUIRED TG PRODUCE PACK TYPE i. EACH ARRAY
ELEMENT STORES THE TOTAL FOR ONE SPECIFIC PACK TYPE i.

Bi = SUMMATION Aij ; (Aij = O or 1).

BPRIME- A 40 ELEMENT INTEGER ARRAY STORING THE TOTAL NUMBER OF

COMPONENTS REQUIRED TO PRODUCE PACK TYPE i.
FOR THESE TEST PROBLEMS, BPRIMEi = Bi + §.

V- A 40 ELEMENT INTEGER ARRAY STORING THE TOTAL NUMBER OF EACH
PACK TYPE i REQUIRED TO BE PRODUCED.

VOLUME- A 40 ELEMENT INTEGER ARRAY STORING THE TOTAL NUMBER OF
COMPONENTS REQUIRED TG PRODUCE ALL OF EACH PACK TYPE i.
(VOLUMEL = BPRIMEi * Vi).

C- A 6 ELEMENT REAL ARRAY STORING THE NUMBER OF AVAILABLE HEADS

ON SEQUENCER k; k = 1...L.

S- A 6 ELEMENT REAL ARRAY STORING THE TOTAL NUMBER OF COMPONENTS
THAT SEQUENCER k IS PERMITTED TO INSERT TO PRODUCE ALL OF ITS
ASSIGNED SEQUENCED TAPES.

L- INTEGER DENOTING THE NUMBER OF AVAILABLE SEQUENCERS.

M- INTEGER DENOTING THE NUMBER OF PACK TYPES REQUIRED

TO BE PRODUCED.

N- INTEGER DENOTING THE NUMBER OF COMPONENT TYPES REQUIRED TO

PRODUCE ALL PACKX TYPES.
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NAXL- INTEGER VARIABLE DENOTING THE MAXIMUN NUMBER OF
SEQUENCERS ALLOWED.
MNAXM- INTEGER VARIABLE DENOTING THE MAXIMUM NUMBER OF
PACK TYPES ALLOWED.
MAXN- INTEGER VARIABLE DENOTING THE MAXIMUM NUMBER OF
CONPONENT TYPES ALLOWED.
BLANK- INTEGER VARIABLE DENOTING A BLANK SPACE.
11,I2,13- 3 INTEGER VARIABLES USED TO DESCRIBE WHICH DECISION
VARIABLE IS BEING CHARACTERIZED AT ANY GIVEN TIME.
ITEMP, JTEMP, KTEMP- 3 INTEGER VARIABLES USED FOR TEMPORARY
STORAGE OF VALUES.
IM- LOOP CONTROL VARIABLE USED WHEN LOOPING OVER PACK TYPES (M).
IN- LOOP CONTROL VARIABLE USED WHEN LOOPING OVER COMPONENT TYPES (N).
IL- LOOP CONTROL VARIABLE USED WHEN LOOPING OVER SEQUENCERS (L).
COMCON- (COMPONENT CONSTANT): AN INTEGER CONSTANT ADDED TO ALL Bi
TO COMPUTE ALL BPRIMEi. (BPRIMEi = Bi + COMCON).
LDCON- (LOAD CONSTANT): AN INTEGER CONSTANT USED TO COMPUTE ALL Sk.
Sk = (SUMMATION i=1...M, (Vi*BPRIMEi)/L + LDCON).
TRUBLE- LOGICAL VARIABLE; TRUBLE IS RETURNED .TRUE. IF A PROBLEM
OCCURS; ie. IF AN OUT-OF-SPACE CONDITION EXISTS WHEN
LINDO SUBROUTINES ’'DEFROW’' OR 'APPCOL' ARE CALLED.

ARk kAR kbR kR kR kR kA ARk kR kS ke k&

e s e e R e I Bt B e Bt I r It Iy Iy I s I s I s I r B r By e I ¢ ]

SUBROUTINE USER

c
C Smnaddddmba kAR AR kRN R AR AR AR AR AR R AR AR AR SRR AR R AR R SRR KSR
c
C DECLARATION OF VARIABLES:
c
DIMENSION VNAME(8), VAL(42), IR0(42), ALFANM(36), VOLUME(40)
DIMENSION A(40,400), B(40), BPRIME(40), V(40), S(6), c(6)
LOGICAL TRUBLE
INTEGER VNAME, IRO, ALFANM, BLANK, NONZ, A, B, BPRIME, VOLUME
INTEGER V, L, N, N, IM, IN, IL, COMCON, LDCON, IVAR
INTEGER I1, I2, I3, ITEMP, JTEMP, KTEMP, MAXL, MAXM, MAXN
REAL C, §, VAL
c
C #aaaubtdadatddddssttbhda bt bhahassbhteeiidhhstbhabhbhtthkbbbhatthbdn
c
C DEFINE ’BLANK’' AND ARRAY ’ALFANM®
c
DATA BLANK/® '/
DATA ALFANM/'O"’I'.'2’;’3'.’4,,’5',,6’|’7’,’8,,’9’.
4+ ’A" 'B",c7‘ 'D"'E"'F,"G"lﬂ,"IY"J’,lK,,'LI,l"I'
+ ,N’.’0'.’?’.’0'."".'8’.’1",'U’.'v’.’w’,'x',’v','z'/

INITIALIZE °COMCON'® AND SET UPPER BOUNDS FOR NUMBER OF
S8EQUENCERS (L), NUMBER OF PACK TYPES (M), AND NUMBER OF COMPONENT
TYPES (N).

aaoaaa
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COMCON = & i
C MAX NUMBER OF SEQUENCERS (L) v
NAXL = 6 ;
C NAX NUMBER OF PACK TYPES (M) )
NAXN = 40 '
C MAX NUMBER OF COMPONENT TYPES (N) !
MAXK = 400

c . )
c L 2 3 SR 2P 2 2 3 E P RS FE R R R SR SRR RS R RS SEESR RS SRS T SRS SRR 2 33 j
¢ y
C READ IN KNOWN DATA

c

C OPEN DATA FILE

OPEN(UNIT=7 ,FILE="DATA.DAT’ ,8TATUS="OLD’) ‘
¢ .
C READ NUMBER OF SEQUENCERS(L), NUMBER OF PACK TYPES(N), AND NUMBER »
C OF COMPONENT TYPES(N). .
c t
READ(7,.#+) L,M,N

C CHECK TO SEE THAT L,M, AND K DO NOT EXCEED UPPER BGUNDS .
c -

IF (L .GT. MAXL) WRITE (+,1000) MAXL

IF (M .GT. MAXN) WRITE (*,b1001) MAXM

IF (N .GT. MAXN) WRITE (s,1002) MAXN )

c

1000 FORMAT (/.' PROGRAM TERMINATED - NUMBER OF SEQUENCERS (L)
+ EXCEEDS MAX ALLOWED:', I4)

1001 FORMAT (/,’ PROGRAM TERMINATED - NUMBER OF PACK TYPES (N)
+ EXCEEDS MAX ALLOWED:', I5)

1002 FORMAT (/,’ PROGRAM TERMINATED - NUMBER OF COMPONENT TYPES (N) v
+ EXCEEDS MAX ALLOWED:’, I6)

IF((L .GT. MAXL) .OR. (M .GT. MAXM) .OR. (N .GT. MAXN))GO TO 99

c

C READ NUMBER OF EACH PACK TYPE TO BE PRODUCED(Vi).

READ(7,+) (V(IM), IM = 1 ,N)

C READ NUMBER OF HEADS AVAILABLE ON EACH SEQUENCER(Ck).

READ(7,s) (C(IL), IL = 1,L)

C READ MATRIX ’'A’

DO 5 IM = 1 N

READ(7,+) (A(IM,IN), IN = 1,N)

6 CONTINUE

C READ LDCON

READ (7,%) LDCON

c

C CLOSE DATA FILE "

CLOSE (UNIT=7) "

c ¢

C ALL KNOWN DATA IS ENTERED W

c

c LI I IR SRR R 22 22 2R 2 R R 22 R A2 2R R R R AR A AR AR R R Rttt

c
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C COMPUTE ALL Bi, BPRIMEi, VOLUMEi, AND Sk AND STORE RESULTS IN
C  ARRAYS 'B’, 'BPRIME’, 'VOLUME®’ AND ’S’ RESPECTIVELY.
c
DO 10 IN =1 ,N
B(IN) = O
DO 16 IN = 1 ,N
B(IM) = B(IM) + A(IM, IN)
16 CONTINUE
BPRINE(IM) = B(IM) + COMCON
10 CONTINUE
c
DO 20 IL = 1,L
8(IL) = 0.
DO 25 IM = 1 M
VOLUME (IM) = V(IM)+BPRIME(IM)
S(IL) = S8(IL) + FLOAT(VOLUME(IN))
25 COKTINVE
8(IL) = S(IL)/FLOAT(L) + FLOAT(LDCON)
20 CONTINUE
c
C ARRAYS 'B’', 'BPRIME’, 'VOLUME', AND °’S’' ARE FILLED
c
c BEEREARRERR AR R AR E RN R AR PR AR AR RN Rk Kk ko
c
C PRINT L,M,N AND LDCON AND ARRAYS 'B’, 'BPRIME’, 'V', 'VOLUME’,
c 'S', AND 'C’
c
C OPEN OUTPUT FILE
OPEN(UNIT=15,FILE="PARAM.DAT’ ,STATUS="NEW')
c
WRITE (15,2000) L,M,N,LDCON
WRITE (15,2001) (B(IM), IM = {.M)
WRITE (165,2002) (BPRIME(IM), IM = 1,M)
WRITE (15,2003) (V(IM), IM = 1 ,N)
WRITE (15,2004) (VOLUME(IM), IN = 1,M)
WRITE (15,2008) (S(IL), IL = 1,L)
WRITE (15,2006) (C(IL), IL = 1,L)
c
2000 FORMAT ('0’, 'L=',12,3X,’'M=',I3,3X, 'N=",14,3X, LDCON='1IT7)
2001 FORMAT ('0', ’ARRAY B:', 15(1X,I3))
2002 FORMAT (’'0’, 'ARRAY BPRIME:’', 10(1X,I5))
2003 FORMAT (’0', ’ARRAY V:', 15(1X,I3))
2004 FORMAT ('O’', 'ARRAY VOLUME:', 10(1X,I5))
2006 FORMAT (’0’, 'ARRAY S:', 6(1X,F10.2))
2006 FORMAT ('0’, 'ARRAY C:', 6(1X,F5.1))
c
C CLOSE QUTPUT FILE
C CLOSE(UNIT=15)
c

c I 2R RS2 R 2 2R 22 2 2 R R 2 R R R RS R 2 2 2R R s R R RS RSRRS 202 2 )

c
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C INITIALIZE THE ROWS OF THE FORMULATION
c
T T T T T P T P T T T P T
c
CALL INIT
c
C OBJECTIVE ROW
CALL DEFROW(1,0.,IDROW, TRUBLE)
c
C PACK-TYPE/SEQUENCER CONSTRAINTS
DO 40 IN = 1 ,N

CALL DEFROW(O,1.,IDROW, TRUBLE)
40 CONTINUE
c
C LOAD BALANCING CONSTRAINTS
DO 60 IL = 1,L

CALL DEFROW(1,S{IL),IDROW, TRUBLE)
60 CONTINUE
c
C HEAD UTILIZATION CONSTRAINTS
DO 60 IL = 1,L

CALL DEFROW(-1,C(IL),IDROW,TRUBLE)
60 CONTINUE
c
C COMPONENT/SEQUENCER CONSTRAINTS
DO 70 IN = 1 .M

D0 80 IL = 1,L

CALL DEFROW(-1,0.,IDROW,TRUBLE)

80 CONTINUE
70 CONTINUE

ROW DEFINITION COMPLETE

REEkERR AR E ke kR bk h kb bR kb kb r bk kb kb kb ok k kR K k%

VARIABLE DESCRIPTION - GENERATE THE 'Y’ DECISION VARIABLES

RN REERERERE AR SRR AR AR RS R RS RN sk kR Rk kb kb h kN kR R bk

PREPARE ARRAY 'VNAME’ FOR THE 'Y’ VARIABLES

oOoaaaaaagaaaan

VNAME (1) = ALFANM(35)
VNAME (5) = BLANK

VNAME(6) = BLANK
VNAME(7) = BLANK
VNAME (8) = BLANK
IVAR = 0

NONZ = 4

c

C DETERMINE THE 'i’ SUBSCRIPT OF 'Yik' BY SBETTING I1 AND I2 = 2 DIGITS
C OF THE PACK TYPE (i = 1...M).
DO 100 IM = 1 N

"ar . Sel, R R I < pa F Ty W B awL
OO N M XN it KOS M M b o 3 S WY o e A s ) WA R N R AR N I 8 A W AA A .
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11 = IN/10
I2 = IN-1I1+10

(1]

C PLACE I1,I2 IN THE VARIABLE NAME
VHAME(2) = ALFANM(I1+1)
VNAME(3) = ALFANN(I2+1)

Q

C DETERNINE THE "k’ SUBSCRIPT OF ’'Yik’
DO 200 IL = 1,L
VNANE(4) = ALFANM(IL+10)

c
C OBJECTIVE COEFFICIENT
VAL(1) = 0.
IR0O(1) = 1

Q

C PACK-TYPE/SEQUENCER CONSTRAINTS
VAL(2) = 1.
IR0(2) = 1+IN

C LOAD BALANCING CONSTRAINTS
VAL(3) = FLOAT(V(IM)=*BPRIME(IM))
TRO(3) = 1+N+IL

C COMPONENT/SEQUENCER CONSTRAINTS
VAL(4) = -FLOAT(B(IM))
IRO(4) = 1+M+2«L+L*(IM-1)+IL

c
C PLACE THE 'Y’ VARIABLES IN THEIR CORRECT ROWS
c
CALL APPCOL(VNAME,NONZ,VAL,IRO,TRUBLE)
IVAR = IVAR + 1
c
C SET AN UPPER BOUND OF '1’ FOR ALL 'Y’ VARIABLES
c
CALL SETSUB(IVAR,1.)
c

200 CONTINUE

100 CONTINUE

c

C GENERATION OF ALL ’Y' DECISION VARIABLES IS COMPLETE

c

c I 33X I3 IS PR R R RS2 2 R RS E SR RS E RS R R R R SRS REEE RS SRR RIS YRR S )
c

C GENERATE THE °'X' DECISION VARIABLES

c

c I 322 22 R RS SRR RR RS R 2 R SRR 2R 22222223 SRR 2SS SRS 2SR T
c

C PREPARE ARRAY 'VNAME' FOR THE 'X' VARIABLES

C

VNAME(1) = ALFANNM(34)

NONZ = N+2

116
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c
C DETERNINE THE ’j' SUBSCRIPT OF 'Xjk’ BY SETTING I1,I2, AND
C I3 = 3 DIGITS OF THE COMPONENT TYPE (j = 1...N). '
DO 300 IN = 1 N
I1 = IN/100
ITENP = IN-I1+100
I2 = ITEMP/10
I3 = ITENP-12+10

[+ ]

PLACE I1,I2,AND I3 IN THE VARIABLE NANE h
VNANE (2) = ALFANM(I1+1)
VNAME (3) = ALFANM(I2+1) o
VNAME(4) = ALFANM(I3+1)

aa

DETERNINE THE 'k’ SUBSCRIPT OF ’'Xjk’ :
DO 400 IL = 1,L B
VNAME(5) = ALFANM(IL+10) N,

aa

OBJECTIVE COEFFICIENT
VAL(1) = 1.
IRO(1) = 1

[+]

HEAD UTILIZATION CONSTRAINTS
VAL(2) = 1.
IR0(2) = 1+M+L+IL

c
C COMPONENT/SEQUENCER CONSTRAINTS
JTEMP = M+2
DO 500 IM = 3, JTEMP 7
KTEMP = IM-2

VAL(IM) = FLOAT(A(KTEMP,IN))
IRO(IM) = 1+M+2+L+L«(IM~3)+IL

500 CONTINUE 'Y
c .,
C PLACE THE X' VARIABLES IN THEIR CORRECT ROWS

c

CALL APPCOL (VNAME, NONZ, VAL, IRO, TRUBLE)
IVAR = IVAR + 1

€TT AN UPPER BOUND OF '1’ FOR ALL ’'X’ VARIABLES

PP PC IS

aaQan

CALL SETSUB(IVAR,1.)
c
400 CONTINUE .
300 CONTINUE
c
C GENERATION OF ALL ’'X' DECISION VARIABLES IS COMPLETE ”
C THE MODEL FORMULATION IS COMPLETE. END OF SUBROUTINE 'USER’. ¢
c -
RETURN
99 END

A AG SISO o....‘t 085 ¢ Y ‘r A, iu " i ‘ " ' . o " '.--. V‘ VLR ES Y ¥ . -"‘ SN\ A
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APPENDIX 8.2 YFIX HEURISTIC PROCEDURE

RSB EEREESBE SR RSN SRR RS RS LR E RS RS R R A KRS IR E B AR XK SRR R RSB SRR A BB &

-

SRR UEE L LD R RS R AR RN E R A KSR S SRS R A B R BB AR AR AT R SR AR R NS R EE AR AR &

- -

THIS 'YFIX’ HEURISTIC PROCEDURE DEVISES A PRODUCTION SCHEDULE
OF SEQUENCED TAPES FOR THE SEQUENCER SCHEDULING/ASSIGNMENT PROBLEN.

¢
[
AR REE SRR R R RSB RE R RS A SRS AR R R R R AR EEE RN RR L LR SRR R R R OB RSN R R R R RS

SRR REE SRS S S AR B R SRR XA LRSS R R RS SR E RS A SRR R AR AR SRR AR R SRRk ABRE A KRS S

VARIABLE DEFINITION: -

T T T T T P P T
THE FOLLOWING VARIABLES ARE TYPE 'INTEGER’ -- s

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

C VOLUME( ) : CONTAINS TOTAL# OF COMPONENTS REQUIRED TO PRODUCE ALL

c UNITS OF EACH PACK TYPE.

C A( , ) : THIS IS MATRIX 'A’ WHICH SHOWS WHICH COMPONENT TYPES ARE
c REQUIRED BY EACH PACK TYPE.

C B( ) : CONTAINS THE TOTAL# OF DIFFERENT COMPONENT TYPES REQUIRED N
c BY EACH PACK TYPE. "
C BPRIME( ., ) : CONTAINS THE TOTAL# OF EACH COMPONENT TYPE REQUIRED .
c BY EACH PACK TYPE.

C HEADS( ) : CONTAINS THE NUMBER OF DISPENSING HEADS ON EACH SEQUENCER.
C L : INTEGER DENOTING THE NUMBER OF AVAILABLE SEQUENCERS.
c

c

c

c

c

c

c

c

c

c

c

c

¢

c

C

c

c

c

c

c

c

c

c

c

c

v

M : INTEGER DENOTING THE NUMBER OF PACK TYPES TO BE PRODUCED.
N : INTEGER DENOTING THE NUMBER OF COMPONENT TYPES.
IM,IN,IL,JM : LOOP CONTROL VARIABLES.
DIFFER( , ) : (M+L)*M MATRIX REPRESENTING THE DEGREE OF SIMILARITY
BETWEEN PACK TYPES.

FIXED( ) : ARRAY USED TO FILL THE FIRST 'M’ ROWS OF ARRAY 'DIFFER’.
COMP( ) : ARRAY USED TO COMPARE PACK TYPES.
SMALL : INTEGER REPRESENTING A NUMERICAL ENTRY IN ARRAY 'DIFFER’.
INDEX : INTEGER REPRESENTING A SELECTED OR ASSIGNED PACK TYPE.
REMAIN( ) : CONTAINS THE NUMBER OF UNALLOCATED HEADS ON SEQUENCERS.
ALCATE( , ) : INDICATES THE ASSIGNMENT OF PACK TYPES TO SEQUENCERS.
V( ) : CONTAINS THE NUMBER OF EACH PACK TYPE TO BE PRODUCED.
UNION( ) : THIS IS THE 'U’ VECTOR INDICATING THE AGGREGATION OF

DIFFERENT COMPONENT TYPES REQUIRED BY A SEQUENCER

FOR A PARTICULAR PRODUCTION RUN.
ITEMP : TEMPORARY VARIABLE USED TO DUPLICATE 'INDEX'.
NEXT : INDICATES THE APPROPRIATE M+kth ROW OF ARRAY 'DIFFER'.
LOAD( ) : CONTAINS THE CURRENT PRODUCTION VOLUME REQUIREMENT

OF EACH SEQUENCER.
SUM : INTEGER DENOTING THE CURRENT NUMBER OF ASSIGNED PACK TYPES.
LIGHT : REPRESENTS THE SEQUENCER WITH THE SMALLEST CUMULATIVE
TOTAL PRODUCTION VOLUME REQUIREMENT IN PART TWO.

KEY : REPRESENTS THE SEQUENCER BEING CURRENTLY SCHEDULED IN PART TWO. -
MAX : THE TOTAL# OF ROWS IN ARRAY ’DIFFER'. ~
TOTAL( ) : CONTAINS TOTAL# OF COMPONENTS REQUIRED TO PRODUCE ONE 3
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UNIT OF EACH PACK TYPE.
ORDER( ) : CONTAINS THE PACK TYPES, IN ASCENDING ORDER, WHICH ARE
DESIGNATED TO BE PRODUCED.

BOARD : REPRESENTS AN INDIVIDUAL PACK TYPE.

COMPNT : REPRESENTS AN INDIVIDUAL CONPONENT TYPE.

NUM : THE NUMBER OF EACH COMPONENT TYPE REQUIRED BY AN INDIVIDUAL

PACK TYPE.
OHAUL( ) : CONTAINS THE TOTAL# OF CHANGE-OVERS REQUIRED BY
EACH SEQUENCER.
TRACK( . . ) : INDICATES THE PACK TYPES ASSIGNED TO EACH SEQUENCER
FOR EACH PRODUCTION RUN.
MAXRUN : THE TOTAL# OF PRODUCTION RUNS MADE BY A SEQUENCER.
HOLD( ) : REPRESENTS THE DEGREE OF COMMONALITY BETWEEN EACH
UNASSIGNED PACK TYPE, AND THE AGGREGATION OF PREVIQUSLY
ASSIGNED PACK TYPES.

NOST : INDICATES THE NUNBER OF COMPONENT TYPES REQUIRED BY EACH
UNASSIGNED PACK TYPE AND THE AGGREGATION OF PREVIOUSLY
ASSIGNED PACK TYPES ON A PARTICULAR SEQUENCER FOR A
PARTICULAR PRODUCTION RUN.

VOLTOT : THE TOTAL# OF COMPONENT INSERTIONS REQUIRED TO PRODUCE

ALL OF THE ASSIGNED PACK TYPES.
EQUAL : THE VOLUME CAPACITY OF EACH SEQUENCER'S FIRST PRODUCTION RUN.
COTYPE( , , ) : INDICATES THE COMPONENT TYPES REQUIRED BY EACH
SEQUENCER FOR EACH PRODUCTION RUN.
COUNT : INTEGER VARIABLE USED TO KEEP COUNT.
TYPE( ) : CONTAINS THE COMPONENT TYPES REQUIRED BY EACH SEQUENCER
FOR EACH PRODUCTION RUN.
SPACES( , ) : CONTAINS THE NUMBER OF COMPONENT TYPES REQUIRED BY
EACH SEQUENCER FOR EACH PRODUCTION RUN.
LDCON : THE VOLUME CAPACITY CONSTANT USED TO CALCULATE THE
SEQUENCER VOLUME CAPACITY IN PART ONE.
SEQTOT( ) : CONTAINS THE TOTAL# OF COMPONENT TYPES REQUIRED BY
EACH SEQUENCER TO MAKE ALL OF IT’S PRODUCTION RUNS.
OTHER( , ) : CONTAINS THE NUMBER OF COMPONENT TAPE CHANGES
REQUIRED BY EACH SEQUENCER BETWEEN CONSECUTIVE
PRODUCTION RUNS.
INTSEC( ) : CONTAINS THE NUMBER OF DEDICATED DISPENSING HEADS
ON EACH SEQUENCER.
INITIM : CPU TIMER VARIABLE.

THE FOLLOWING VARIABLES ARE TYPE 'LOGICAL® --

FILLED : USED TO FILL THE FIRST 'M’ ROWS OF ARRAY 'DIFFER’.

PACK( ) : INDICATES WHEN A PACK TYPE IS ASSIGNED FOR PRODUCTION.

PACK2( ) : INDICATES WHEN A PACK TYPE IS ASSIGNED FOR PRODUCTION
IN PART TWO OF THE ALGORITHM.

3 A2 AR R 2 R R R R R R 2 F R 22 RS R A S R 22 R 22 2R R YR RS2 2 S0 3

SUBROUTINE DEFINITION:

SEEREREAERAR B AR R R B R R RN A AR R AR AR KRR AR AR AR SRS R R RN kR E AR e eSO RN

AN e -
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RESULT : SELECTS THE ’'LEAST’ OR 'MOST' COMMON UNASSIGNED PACK TYPE.

ASSIGN : ABSIGNS A PACK TYPE TO A SEQUENCER, UPDATES ARRAY 'PACK’,
UPDATES PVRk, INDICATES THE SEQUENCER AND PRODUCTION RUN
TO WHICH A PACK TYPE IS ASSIGHED, AND UPDATES THE TOTAL
NUMBER OF ASSIGNED PACK TYPES.

NEXPAC : SELECTS THE MOST SIMILAR UNASSIGNED PACK TYPE.

COMPARE : ESTABLISHES THE 'U’ VECTOR.

NEWDIF : UPDATES THE APPROPRIATE M+kth ROW OF ARRAY ’'DIFFER’.

SEEE LR RE S SRR AR R E R AR AR A RS R R AR R RSN R R A RS SRS kSRR T SO

DECLARATION OF VARIABLES:

RSB REX RS EREREBRER R R RN AR R AR AR R R R AR AR AR AR R RN R AR A E S b SR kAR an

HOaOOaoaoaaaaooaaaaoaaaaaan

NTEGER VOLUME(40), A(40,210), B(40), BPRIME(40,210), HEADS(6)
INTEGER L, M, N, IM, IN, IL, JM, DIFFER(46,40), FIXED(210)
INTEGER COMP(210), SMALL, INDEX, REMAIN(6), ALCATE(6,40), V(40)
INTEGER UNION(210), ITEMP, NEXT, LOAD(6), SUM, LIGHT, KEY, MAX
INTEGER TOTAL(40), ORDER(40), BOARD, COMPNT, NUM, OHAUL(6)
INTEGER TRACK(6,10,40), MAXRUN, HOLD(40), MOST, VOLTOT, EQUAL
INTEGER COTYPE(6,10,210), COUNT, TYPE(210), SPACES(6,10), LDCON
INTEGER SEQTDT(6), OTHER(6,10), INTSEC(6), INITIM

LOGICAL FILLED, PACK(40), PACK2(40)

I3 I I e R R R S R R s 2 R R R R R R R R R R RS R SRR RS SRR 2R RS R S T )

c
c
C READ IN KNOWN DATA
c
c
c

[ E R 2 RS SRS R R R R R 22 2 2 22 2 23 R S 2R SR R R 22 R S22 s s st )

SET SEQUENCER VOLUME CAPACITY CONSTANT (5%=20, 10%=10, 25%=4)
LDCON = 10
c
C OPEN DATA FILES
OPEN(UNIT=10,FILE='KNOWN.DAT’ ,STATUS='0LD’)
OPEN(UKIT=11,FILE='INPUT.DAT’,STATUS='0LD’)
OPEN(UNIT=12,FILE='SUBSET.DAT',STATUS='0LD")
c
C READ IN L ,M,N, V(M), HEADS(L), ORDER(M)
c
READ(10,+) LM, N
READ(10,+) (V(IM), IM = 1 ,M)
READ(10,+) (HEADS(IL), IL = {,L)
READ(12,+) (ORDER(IM), IM = 1 M)
c
C READ IN THE TYPE (COMPNT), AND NUMBER OF EACH TYPE (NUM), OF
C COMPONENT REQUIRED BY EACH PACK TYPE TO BE PRODUCED (BOARD)
c
4000 READ(11,1000,END=4200) BOARD, COMPNT, NUM
DO 5 IN = 1 N
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IF (BOARD .EQ. ORDER(IN)) GO TO 4100
IF(IN .EQ. N .AND. BOARD .GT. ORDER(IM)) GO TO 4200
&5 CONTINUE

: GO TO 4000
| c
€ FILL NATRIX ’'A’ AND MATRIX 'BPRINE’
c
4100 A(IM,COMPNT) = 1
BPRIME (IN,COMPNT) = NUN
GO TO 4000
c
C CLOSE DATA FILES
4200 CLOSE(UNIT=10)
CLOSE(UNIT=11)
CLOSE(UNIT=12)
c
C INITIALIZE ARRAYS 'PACK’ AND 'PACK2', AND COMPUTE ALL Bi, TOTALi,
C VOLUMEi, THE TOTAL PRODUCTION VOLUME REQUIREMENT (VOLTOT), AND
C THE SEQUENCER VOLUME CAPACITY PERMITTED IN THE FIRST RUN (EQUAL).
c
DO 10 IN = 1., M
¢
PACK(IM) = .TRUE.
PACK2(IM) = .TRUE.

B(IM) = 0

TOTAL(IN) = 0

pO 15 IN = 1,N

B(IN) = B(IN) + A(IM,IN)
TOTAL(IN) = TOTAL(IM) + BPRIME(IM,IN)

15 CONTINUE
c
C CHECK THAT THE NUMBER OF COMPONENT TYPES REQUIRED BY PACK(IM) IS
C  GREATER THAN ZERO AND NOT GREATER THAN 100. (ie. 0 < B(IM) <= 100)
c

IF (B(IM) .EQ. O .OR. B(IN) .GT. 100) THEN

WRITE(+,1012) ORDER(IM), B(IN)
GO0 TO 9900

ENDIF
10 CONTINUE
c
1012 FORMAT (/, ' PROGRAM TERMINATED - NUMBER OF COMPONENT TYPES

+ REQUIRED BY PACK’,(I14,' EQUALS', I4)

c
VOLTOT = O
DO 20 IM = 1 .M

VOLUME (IM) = V(IM)*TOTAL(IM)

VOLTOT = VOLTOT + VOLUME(INM)
20 CONTINUE
EQUAL = VOLTOT/L + VOLTOT/LDCON
C

lmmﬂLKhKAKxKnKlKxﬂGQdO0ﬁGﬁu0YQQﬂhﬂuﬂu(cﬁ&ﬂcﬁdﬁﬂﬁ&ﬁif&lﬂﬂif




C END OF DATA ENTRY AND DATA MANIPULATION
c

C START THE CPU TIMER

IF(.NOT. LIBSINIT_TIMER(INITIM)) GO TO 9900
C

C 3322292240482 LR RERRRERERE AR R ARSI RERSNRERRERSRR SRS RbbbtR

C FILL THE FIRST 'N’ ROWS OF ARRAY 'DIFFER’
c IR I R R SRR 22 S SRR S22 R RS RE R ER RS RSS2SR RS2 2222 22 2 ¢ 8
c
DO 26 IM = 1,N
FILLED = .FALSE.
DO 30 JM = { N
IF(JM .EQ. IM) THEN
DIFFER(IM,JN) = 500
ELSE
DIFFER(IN,JN) = O
DO 35 IN = 1 ,N
IF(.NOT. FILLED) FIXED(IN) = A(IM,IN)
COMP (I¥) = A(JM,IN)
IF(FIXED(IN) .EQ. O .AND. COMP(IN) .EQ. 1) THEN
DIFFER(IM,JM) = DIFFER(IM,JM) + 1
ENDIF
35 CONTINUE
FILLED = .TRUE.
ENDIF
30 CONTINUE
26 CONTINUE

SESEAR A SRR R RS A SRR SRR AR AR Rk AR R KRR Rk kR A AR R AR Rk kR E g

AR SR L2 R R R R R R AR e R RS2 2t

c
c
c
C
C PART ONE OF THE HEURISTIC ALGORITHM -

C DETERMINES INITIAL ASSIGNMENT OF PACK TYPES FOR EACH SEQUENCER
c

c

c

c

c

AERRR R LR LN R RSB ER XA AR R R R R AR SRR R SRR R AR AR RN ER ARk

EEREE A BB R KRR R E R A XA AR R R RS R R AR AL A IR SR A SR A AR R AR AR AR RS A kR

OPEN QUTPUT FILE
OPEN (UNIT=21,FILE="INFO.DAT’,STATUS="'NEW’)
c
C INITIALIZE THE NUMBER OF PACKS ASSIGNED (SUM), THE MAXIMUM NUMBER OF
C PRODUCTION RUNS ALLOWED (MAXRUN), THE STARTING PRODUCTION VOLUME
C REQUIREMENT OF EACH SEQUENCER (LOAD), AND THE NUMBER OF CHANGE-
C OVERS MADE BY EACH SEQUENCER.
c

SUM = 0

MAXRUN = 10

DO 60 IL = 1,L
LOAD(IL) = O
OHAUL(IL) = O
DO 65 JM = 1 MAXRUN




DO 60 IN = 1 N
COTYPE(IL,JN,IN) = O

60 CONTINUE
56 CONTINUE

60 CONTINUE

c

C SBELECT THE FIRST PACK TYPE FOR ASSIGNMENT ON EACH SEQUENCER se*ssssesx
C .
DO 100 IL = 1,L
NEXT = M + IL
IF(IL .EQ. 1) THEN
SMALL = 500
ELSE
SMALL = O
ENDIF
c
C USE THE STARTING RULE FOR THE FIRST SEQUENCER #s*ssssssssssssssassans
c
DO 105 IM =1 M
IF(IL .EQ.1) THEN
IF(B(IM) .LT. SMALL) THEN
INDEX = IM
ITEMP = INDEX
SMALL = B(IM)
ENDIF
c
C USE THE ’‘LEAST COMMON’ RULE FOR THE LAST L - 1 SEQUENCERS ssssssxssss
c
ELSE
c
C FILL ARRAY 'HOLD’ WITH THE 'MOST COMMON' UNASSIGNED PACK TYPES #sxsss
c
IF(DIFFER(NEXT-1,IM) .LT. HOLD(IM))
+ HOLD(IM) = DIFFER(NEXT-1,IM)
c
C SELECT THE 'LEAST COMMON’ UNASSIGNED PACK TYPE #sssssssssssasenssases
c
IF(HOLD(IM) .GT. SMALL .AND. PACK(IM)) THEN
SMALL = HOLD(IM)
CALL RESULT (INDEX,IM, ITEMP,SMALL,MOST,B(IM))
ELSE
c
C IF A TIE EXISTS, IMPLEMENT THE HDOS PROCEDURE #*sesssssssssssssssonns
c
IF(HOLD(IM) .EQ. SMALL .AND.

+ (B(IM) - SMALL) .LT. MOST) THEN
CALL RESULT (INDEX,IM,ITEMP,SMALL MOST,B(IM))
ENDIF
c
ENDIF
ENDIF
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105 CONTINUE
SMALL = B(INDEX)

THE FIRST PACK TYPE IS SELECTED #%% %834 ¢s 4824tk tssassssshsasns
NOTE THE PACK TYPE SELECTED, AND IT'S CORRESPONDING Bi

WRITE(21,+) ' °*

WRITE(21,1006) INDEX, SMALL, NOST

ASSIGN THE PACK TYPE TO THE kth SEQUENCER AND UPDATE PVRk #sssssssxss

aaoaoaoagcaaan

CALL ASSIGN(VOLUME (INDEX) ,ORDER(INDEX),LOAD(IL),SUM,
+ ALCATE(IL, INDEX) ,PACK (INDEX) , TRACK(IL,1,INDEX))
c
C CHECK IF ALL PACKS ARE ASSIGNED *s*xtussss bt ssusbhnithsehksrucetbdeskns
IF(SUM .EQ. M) THEN
DO 107 IN = {,N
IF(A(INDEX,IN) .EQ. 1) COTYPE(IL,1,IN) =1

107 CONTINUE
GO TO 9000

ENDIF

c

C UPDATE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk) stsssssssssssssssnss
c
REMAIN(IL) = HEADS{IL) - SMALL
C
C NOTE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk)
C WRITE(21,1010) IL, REMAIN(IL)
Cc
C LOCATE THE ’'MOST SIMILAR’ UNASSIGNED PACK TYPE #sessstxsssnssssstsnss
c
SMALL = 500
DO 110 IM = 1 M
C

CALL NEXPAC(PACK (IM),DIFFER(ITEMP,IM),6SMALL, INDEX,

+ MOST,B(IM),IM)

C
110 CONTINUE
Cc
C NOTE THE PACK TYPE SELECTED, AND IT'S CORRESPONDING Bi
C WRITE(21,1005) INDEX, SMALL, MOST

Cc
C CHECK IF THIS UNASSIGNED PACK TYPE CAN BE ASSIGNED GIVEN THE
C CURRENT Hk AND PVRK #¢# %8424t unuah bk bhb btk b bbb boahahtannhn
C
IF((REMAIN(IL) - SMALL) .GE. O .AND.
+ (LOAD(IL) + VOLUME(INDEX)) .LE. EQUAL) THEN
C

C ASSIGN THE PACK TYPE TO THE kth SEQUENCER AND UPDATE PVRk ¢sessssnsss
c

CALL ASSIGN(VOLUME(INDEX),ORDER(INDEX),LOAD(IL),SUM,
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+ ALCATE (IL, INDEX) ,PACK (INDEX) , TRACK (IL,1,INDEX))

[+ 1]

UPDATE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk) ##s¥sussssrssssnssss

Q

REMAIN(IL) = REMAIN(IL) - SMALL

c

C NOTE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk)
C WRITE(21,1010) IL, REMAIN(IL)
c
c

INITIALIZE ARRAY 'UNION’
DO 112 IN = 1 N
UNION(IN) = O
112 CONTINUE
c
C IF THIS UNASSIGNED PACK TYPE CANNOT BE ASSIGNED GIVEN THE CURRENT
c Hk AND/OR PVRk, COPY THE APPROPRIATE ith ROW OF 'DIFFER’ INTO
c THE APPROPRIATE M+kth ROW, AND BEGIN SCHEDULING THE NEXT SEQUENCER.
c
ELSE
DO 115 IM = 1 .M
DIFFER(NEXT,IM) = DIFFER(ITEMP, IM)
IF (NEXT .EQ. (M+1)) HOLD(IM) = DIFFER(NEXT,IM)
115 CONTINUE
DO 117 IN = L N
COTYPE(IL,1,IN) = A(ITEMP,IN)
117 CONTINUE
c
GO TO 100
ENDIF
c
C WHEN TWO OR MORE PACKS ARE ASSIGNED TO THE SAME SEQUENCER,
[ PERFORM THE COMPARISON OPERATION *#sssxsxssrdnsdtihnndnsrnskenshbhs
c
5000 DO 120 IM = { M
IF(ALCATE(IL,IM) .EQ. 1) THEN
DO 125 IN = L, N

c
CALL COMPARE(A(IM,IN),UNION(IN),COTYPE(IL,1,IN))
c
126 CONTINUE
ENDIF
120 CONTINUE
C

C CHECK IF ALL PACKS ARE ASSIGHED #*xssskasasnssssbrrbnpnrrssnhthbhdsns
IF(SUM .EQ. M) GO TO 9000

c

C NOTE THE 'U’ VECTOR

C WRITE(21,+) 'ARRAY UNION:'

C WRITE(21,1003) (UNION(IN),IN = 1 N)

c

DO 130 IM = 1 M
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IF (PACK(IN)) THEN
DIFFER(NEXT,IM) = 0
DO 1356 IN = 1,N

Cc
CALL NEWDIF (COMP(IN),A(IM,IN), UNION(IN),
+ DIFFER(NEXT,IM))

C
135 CONTINUE

ELSE

DIFFER(NEXT, IM) = 500

ENDIF
130 CONTINUE
(v
C COMPARISON OPERATION IS COMPLETE *®s#xtktsahbbhhahbdhsashbsasbrhhbsnk
Cc
C NOTE THE UPDATED M+kth ROW OF ARRAY ’DIFFER’
C WRITE(21,%) *
C WRITE(21,%) 'DIFFER:’
C WRITE(21,1002) (DIFFER(NEXT,IM), IM = 1, M)
C WRITE(21,+) * °
c
C LOCATE THE ’'MOST SIMILAR’ UNASSIGNED PACK TYPE ##ssssasshksshbrtsehes
c
SMALL = 500
DO 140 IM = 1 M
c
CALL NEXPAC(PACK(IM) ,DIFFER(NEXT,IM),6SMALL, INDEX,
+ MOST,B(IN),IM)

c
140 CONTINUE
C

C NOTE THE PACK TYPE SELECTED, AND IT'S CORRESPONDING Bi
C WRITE(21,1005) INDEX, SMALL, MOST
c
C CHECK IF THIS UNASSIGNED PACK TYPE CAN BE ASSIGNED GIVEN THE
C CURRENT Hk AND PVRK #**%%kkkaahknabkhrkbbhkhbhbebbhhhkrbnrbahrnnkhnnkhn
c
IF((REMAIN(IL) - SMALL) .GE. O .AND.

+ (LOAD(IL) + VOLUME(INDEX)) .LE. EQUAL) THEN
C
C ASSIGN THE PACK TYPE TO THE kth SEQUENCER AND UPDATE PVRk #ssxxssxsss
c

CALL ASSIGN(VOLUME (INDEX),ORDER(INDEX),LOAD(IL),SUM,

+ ALCATE(IL, INDEX) ,PACK (INDEX),TRACK(IL,1,INDEX))
Cc
C UPDATE THE NUMBER OF UNALLOCATED HEADS (Ck - HK) s#sthssvsassssusnnan
c

REMAIN(IL) = REMAIN(IL) - SMALL

c
C NGTE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk)
C WRITE(21,1010) IL, REMAIN(IL)
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PERFORN THE COMPARISON OPERATION. CONTINUE THIS LOOP UNTIL
THE kth SEQUENCER IS FULLY SCHEDULED ###sssssssssssssnssnssossanses

Qaaoaan

GO TO 5000
ENDIF
c
C INITIALIZE ARRAY 'HOLD' AFTER THE FIRST SEQUENCER IS SCHEDULED ¢s¢sss
c
IF(NEXT .EQ. (M+1)) THEN

DO 1456 IN = 1 N

HOLD(IM) = DIFFER(NEXT,IM)

145 CONTINUE
ENDIF
c
C NOTE ARRAY 'HOLD’
C WRITE(21,*) 'HOLD:’
C WRITE(21,1002) (HOLD(IM), IM = 1 ,M)
C WRITE(21.,*) * '
c
C CONTINUE THIS LOOP UNTIL ALL SEQUENCERS ALL FULLY SCHEDULED #sessesss
C
100 CONTINUE

AR EESEEERRAS BB EB R RS ERAR RS S RERER R AR AR RASE R 2SR RS EE RS2 Es kR bsdEd

LA R i T R Y Y P P R R R Y PSS I L]

PART ONE OF THE HEURISTIC ALGORITHM IS COMPLETED. EACH SEQUENCER HAS
AN INITIAL ASSIGNMENT OF PACK TYPES FOR ONE PRODUCTION RUN.
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PART TWO OF THE HEURISTIC ALGORITHM -
S8CHEDULES ANY REMAINING UNASSIGNED PACK TYPES
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SELECT THE SEQUENCER WITH THE SMALLEST CUMULATIVE PVRk,for k= 1 to L,
TO MAKE MULTIPLE PRODUCTION RUNS #ssssssssstssssssnssssassnatonstts

a0 aaa0a

6000 KEY = 1
LIGHT = LOAD(1)
DO 200 IL = 2,L
IF(LOAD(IL) .LT. LIGHT) THEN
KEY = IL
LIGHT = LOAD(IL)
ENDIF
200 CONTINUE
c
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C NOTE THE SEQUENCER SELECTED, AND IT’'S CORESPONDING PVRk

C WRITE(21,1006) KEY, LIGHT

c

C RECORD THE NUMBER OF CHANGE-OVERS MADE BY THE kth SEQUENCER s#s%xs

c

OHAUL (KEY) = OHAUL(KEY) + 1

C

C SELECT THE FIRST PACK TYPE FOR ASSIGNMENT ON THE kth SEQUENCER

[+ USING THE ’NOST COMMON’ RULE #%42 4458450522 sst st kssisttbhsatbtbhsss
c

SNALL = 500
DO 205 IM = 1i,N
c

CALL NEXPAC(PACK(IM) ,DIFFER(M+KEY, IM), SMALL, INDEX,
+ MOST,B(IN),IM)
C
205 CONTINUE
SMALL = B(INDEX)
c
C THE FIRST PACK TYPE 1S SELECTED s*%ssastssndrbhsnktbbohrhhbkbhonhkk
C
C NOTE THE PACK TYPE S8ELECTED, AND IT’'S CORRESPONDING Bi
C WRITE(21,1005) INDEX, SMALL, MOST
C
C ASSIGN THE PACK TYPE TO THE kth SEQUENCER AND UPDATE PVRk s#ssasssnss
c
CALL ASSIGN(VOLUME (INDEX),ORDER(INDEX),LOAD(KEY),SUM,
+ ALCATE (KEY, INDEX) ,PACK (INDEX) , TRACK (KEY, OHAUL (KEY) +1, INDEX))

PACK2(INDEX) = .FALSE.
c
C DETERMINE THE COMPONENT TYPES REQUIRED FOR THE ASSIGNED PACK TYPE *%=
C
DO 207 IN = 1 N

IF(ACINDEX,IN) .EQ. 1) COTYPE(KEY,OHAUL(KEY)+1,IN) = 1
207 CONTINUE
C
C CHECK IF ALL PACKS ARE ASSIGNED *#ssaanasasssddbhdhsbhkhnaht kbbb hhhh
IF(SUM .EQ. M) GO TO 9000
c
C INITIALIZE ARRAY 'UNION®
DO 212 IN = { N

UNION(IN) = O
212 CONTINUE
C
C UPDATE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk) #ssusessssssssarsnss
c
REMAIN(KEY) = HEADS(KEY) - SMALL
C
C NOTE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk)
C WRITE(21,1010) KEY, REMAIN(KEY)
c
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C UPDATE THE APPROPRIATE N+kth ROW OF ’DIFFER’ ###ssssssusasessssssssns
c
DO 210 IN = 1 ,N
IF (PACK(IN)) THEN
DIFFER(N+KEY,IN) = DIFFER(INDEX, IN)
ELSE
DIFFER(M+KEY,IN) = 600
ENDIF
210 CONTINUE

NOTE THE UPDATED M+kth ROW OF ARRAY °'DIFFER
WRITE(21,+) 'DIFFER:’®

WRITE(21,1002) (DIFFER(M+KEY,IM), IM = 1 ,N)
WRITE(21,%) * °*

LOCATE THE 'MOST SIMILAR’' UNASSIGNED PACK TYPE ssssssssdsesshsrssnshs

aaaaaaan

7000 SMALL = 500
DO 215 IN = 1 M

c
CALL NEXPAC(PACK(IM) ,DIFFER(M+KEY, IM), SMALL, INDEX,
+ NOST,B(IM),IM)
c
216 CONTINUE
4

C NOTE THE PACK TYPE SELECTED, AND IT'S CORRESPONDING Bi
C WRITE(21,1005) INDEX, SMALL, MOST
C
C CHECK IF THIS UNASSIGNED PACK TYPE CAN BE ASSIGNED GIVEN THE
C CURRENT Hk #**ssdstsssebndsssstsbdbrsnsdussdsnssrhbhbbbbbbstsbshbbhbrid
c
IF ((REMAIN(KEY) - SMALL) .GE. O) THEN
c
C ASS8IGN THE PACK TYPE TO THE kth SEQUENCER AND UPDATE PVRk s»s#ssssxux
c

CALL ASSIGN(VOLUME (INDEX),ORDER(INDEX),LOAD(KEY),SUN,

+ ALCATE(KEY, INDEX) , PACK (INDEX) , TRACK (KEY , OHAUL (KEY) +1, INDEX))

PACK2(INDEX) = .FALSE.

DIFFER(M+KEY, INDEX) = 500
c
C UPDATE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk) #ssssrssssssansssssns
c
REMAIN(KEY) = HEADS(KEY) - SMALL
C
C NOTE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk)
C WRITE(21,1010) KEY, REMAIN(KEY)
C
C PERFORM THE COMPARISON OPERATION sxsssstssssssstrsstttttsdsssnsttssss
c

DO 220 IN = t N

IF(.NOT. PACK2(IM)) THEN

AR e e e
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IF(ALCATE(KEY,IM) .EQ. 1) THEN
DO 226 IN = i N

c
CALL COMPARE(A(IM,IN),UNION(IN),

+ COTYPE(KEY, OHAUL (KEY) +1,IN))
c
226 CONTINUE

ENDIF

ENDIF

220 CONTINUE

c
C CHECK IF ALL PACKS ARE ASSIGNED #s stk ktssskbrbsbsbsbnatrbstrbsssishnd
IF(SUM .EQ. M) GO TO 9000

NOTE THE 'U’ VECTOR
WRITE(21,*) 'ARRAY UNION:'
WRITE(21,1003) (UNION(IN), IN = 1,N)

aaaaan

DO 230 IM = 1 .M
IF(PACK(IM)) THEN
DIFFER(M+KEY,IM) = 0
DO 236 IN = {,N

c
CALL NEWDIF (COMP(IN),A(IM,IN),UNION(IN),

+ DIFFER(M+KEY, IM))

c

236 CONTINUE
ENDIF

230 CONTINUE

c

C COMPARISON OPERATION IS COMPLETE ##*tskhbkkbkkabbhhharhhbhhsbrnonnbns
c

C NOTE THE UPDATED M+kth ROW OF ARRAY ’'DIFFER’

c WRITE(21,%) ' °

c WRITE(21,+) 'DIFFER:’

c WRITE(21,1002) (DIFFER(M+KEY,IM), IM = 1,M)
c WRITE(21,%) * °
c
C
c
c

CONTINUE THIS LOOP UNTIL EITHER Ck PREVENTS ANY OTHER PACK TYPES
FROM BEING ASSIGNED, OR UNTIL ALL PACK TYPES ARE ASSIGNED #sssssses

GO TO 7000
ELSE

DO 240 IN = 1 M

PACK2(IM) = .TRUE.

240 CONTINUE

GO0 TO 6000
ENDIF
c
C 8TOP THE CPU TIMER
9000 IF(.NOT. LIB$SHOW_TIMER(INITIM)) GO "0 9900
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PART TWO OF THE HEURISTIC ALGORITHM IS COMPLETED. ALL PACK TYPES
ARE SCHEDULED FOR PRODUCTION
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PRINT THE INPUT PARAMETERS, KNOWN DATA, DEVISED PRODUCTION SCHEDULE,
AND ASSOCIATED PRODUCTION SCHEDULE CHARACTERISTICS.

aagdaagaancaaaaaaan

WRITE(21,1001) L, N, N

WRITE(21,1019) VOLTOT, EQUAL

WRITE(21,+) 'ARRAY V:°

WRITE(21,1002) (V(IM), IM = 1,M)

WRITE(21,+) * °

WRITE(21,%) ’ARRAY HEADS:'

WRITE(21,1002) (HEADS(IL), IL = 1,L)

WRITE(21,+) * °

WRITE(21,+) 'ARRAY ORDER:’

WRITE(21,1002) (ORDER(IM), IM = 1,N)

WRITE(21,%) *

WRITE(21,+) ’ARRAY B:°

WRITE(21,1002) (B(IM), IM = 1,N)

WRITE(21,s) * °'

WRITE(21,*) ’ARRAY TOTAL:’

WRITE(21,1004) (TOTAL(IM), IM = 1, N)

WRITE(21,%) * '

WRITE(21,*) 'ARRAY VOLUME:'

WRITE(21,1004) (VOLUME(IM), IN = 1,M)

WRITE(21,#) ' °

WRITE(21,%) ’TOTAL WORKLOAD PER SEQUENCER IS:'’
WRITE(21,1004) (LOAD(IL), IL = 1,L)

C LOOK AT ARRAY 'DIFFER’ IF SO DESIRED

CNAX =N + L

C WRITE(21,*) * '

C WRITE(21,+) 'ARRAY DIFFER:’

C DO 902 IN = 1, ,MAX

c WRITE(21,1002) (DIFFER(IM,JM), JM = 1 ,N)
€902 CONTINUE

WRITE(21,+) ' °®

¢

C PRINT THE TOTAL NUMBER OF SEQUENCED TAPES PRODUCED (SUM) ssssssssssex
WRITE(21,1008) SUM

WRITE(21,+) 'THE TOTAL NUMBER OF CHANGE-OVERS PER SEQUENCER 1S:°'
WRITE(21,1002) (OHAUL(IL), IL = 1,L)

c

C PRINT THE PACK TYPES ASSIGNED TO EACH SEQUENCER FOR EACH RUN ssssssss
DO 260 IL = 1,L
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MAXRUN = QHAUL(IL) + 1
D0 266 JN = 1, ,MAXRUN
WRITE(21,1013) IL,JN
WRITE(21,1014) (TRACK(IL,JN,IM).IM = 1 .M)
266 CONTINUE
260 CONTINUE
c
C PRINT THE COMPONENT TYPES REQUIRED BY EACH SEQUENCER FOR EACH RUN »s=
DO 300 IL = 1,L
NAXRUN = OHAUL(IL) + 1
DO 305 JM = 1, MAXRUN
COUNT = 0
DO 310 IN = 1,N
IF(COTYPE(IL,JM,IN) .EQ. 1) THEN
COUNT = COUNT + 1
TYPE(COUNT) = IN
ENDIF
C RE-INITIALIZE ARRAY 'UNION’ FOR LATER OUTPUT
UNION(IN) = O
310 CONTINUE
SPACES(IL,JN) = COUNT
WRITE(21,1016) IL, JM, COUNT
WRITE(21,1017) (TYPE(IN), IN = 1,COUNT)
305 CONTINUE
300 CONTIKUE
c
C PRINT ALL OF THE COMPONENT TYPES REQUIRED BY EACH SEQUENCER TO
C PRODUCE ALL OF THEIR ASSIGNED SEQUENCED TAPES ssssssassssssssssnass
D0 320 IL = 1,L
COUNT = 0
po 325 IN = i M
IF(ALCATE(IL,IM) .EQ. 1) THEN
DO 330 IN = 1 ,N
IF(ACIN,IN) .EQ. 1) UNION(IN) =1
330 CONTINUE
ENDIF
325 CONTINUE
DO 335 IN = 1 ,N
IF(UNION(IN) .EQ. 1) THEN
COUNT = COUNT + 1
TYPE(COUNT) = IN
ENDIF
C RE-INITIALIZE ARRAY 'UNION' FOR LATER OUTPUT
UNION(IN) = O
335 CONTINUE
S8EQTOT(IL) = COUNT
WRITE(21,1018) IL, COUNT
WRITE(21,1017) (TYPE(IN), IN = 1,COUNT)
320 CONTINUE
c
DO 350 IL = 1,L
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MAXRUN = OHAUL(IL) + t
INTSEC(IL) = ©
OTHER(IL,1) = 0
IF(MAXRUN .EQ. 2) THEN
SNALL = SPACES(IL,1)
IF(SPACES(IL,2) .LE. SMALL) SMALL = SPACES(IL,2)
DO 365 IN = 1.N
IF ((COTYPE(IL,1,IN) + COTYPE(IL,2,IN)) .EQ. 2) THEN
INTSEC(IL) = INTSEC(IL) + 1
SNALL = SMALL - 1
ENDIF
365 CONTINUE
OTHER(IL,2) = SMALL
GO0 TO 350
ELSE
IF(MAXRUN .GE. 3) THEN
DO 360 JM = 1, MAXRUN
COUNT = O
DO 365 IN = 1 N
IF(COTYPE(IL,JM,IN) .EQ. 1)UNION(IN)=UNION(IN)+1
IF(JM .LE. (MAXRUN-1)) THEN
IF (COTYPE(IL,JM,IN) + COTYPE(IL,JIM+1,1IN)
+ -EQ. 2) THEN
COUNT = COUNT + 1
OTHER(IL,JM+1) = SPACES(IL,JM+1) - COUNT
ENDIF
ENDIF
365 CONTINUE
360 CONTINUE
DO 370 IN = 1 ,N
IF(UNION(IN) .EQ. MAXRUN) INTSEC(IL)=INTSEC(IL) + 1
UNION(IN) = 0
370 CONTINUE
ENDIF
ENDIF
350 CONTINUE
c
C PRINT THE NUMBER OF DEDICATED HEADS ON EACH SEQUENCER esssssssnssssss
DO 375 IL = 1,L
IF(OHAUL(IL) .EQ. O) THEN
WRITE(21,1024) IL

ELSE
WRITE(21,1020) IL, INTSEC(IL), IL,
+ FLOAT(INTSEC(IL))/FLOAT(HEADS(IL))
ENDIF
375 CONTINUE

c
C PRINT THE NUMBER OF COMPONENT TAPE CHANGES REQUIRED BY EACH
C  SEQUENCER BETWEEN CONSECUTIVE PRODUCTION RUNS ¢sssssasssstossnsanss
DO 386 IL = 1,L
MAXRUN = QHAUL(IL) + 1
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IF (MAXRUN .EQ. 1) THEN
WRITE(21,1023) 1L
ELSE
DO 390 JN = 2,MAXRUN
WRITE(21,1022) IL, JM, OTHER(IL,JN)
390 CONTINUE
ENDIF
385 CONTIKUE
c
C PRINT THE TOTAL NUMBER OF COMPONENT TAPE CHANGES REQUIRED BY
C EACH SEQUENCER OVER ALL PRODUCTION RUNS #ssssssssssssssssssssesssss
DO 400 IL = 1, L
COUNT = 0
MAXRUN = QHAUL(IL) + 1
IF(MAXRUN .GE. 2) THEN
DO 405 JM = 2,MAXRUN
COUNT = COUNT + OTHER(IL,JM)
405 CONTINUE
WRITE(21,1021) IL, COUNT
ENDIF
400 CONTINUE
c
c
1000 FORMAT (I4,15,1I5)
1001 FORMAT (’0’, 'YFIX: L=',I2, 3X, 'M=',I3, 3X, 'N=’ 14, /)
1002 FORMAT (12(1X,I4))
1003 FORMAT (30(1X,I1))
1004 FORMAT (9(1X,I6))
1005 FORMAT (' ', 'INDEX:’,I4, 3X, 'SMALL:',I4, 3X, 'MOST:’,I14,/)
1006 FORMAT (* *, 'KEY:’, I2, 3X, 'LIGHT: *, 16, /)
1007 FORMAT (* ',20(1X,L2))
1008 FORMAT (' TOTAL NUMBER OF SEQUENCED TAPES PRODUCED IS: ',13,/)
C 1009 FORMAT (’0', 'PACK’,I4)
1010 FORMAT (' ’,*SEQUENCER# IS:',I3,6X,'#HEADS REMAINING IS:’,14,/)
1011 FORMAT (' ', 'Y’ ,I1,',’, 13,’ =1')
1013 FORMAT ('0','SEQUENCER#',I3,4X,’RUN#’',I4,/,’ PACK TYPES
+ASSIGNED ARE:’)
1014 FORMAT (15(1X,13))
1016 FORMAT ('0’, 'FOR SEQUENCER#',I3,3X,'RUN#' 14,/,
+ ' TOTAL # OF COMPONENT TYPES REQUIRED =’,14,/,
+ ' COMPONENT TYPES REQUIRED ARE:')
1017 FORMAT (15(1X,13))
1018 FORMAT (’0’, 'FOR SEQUENCER#’,13./,
+ ' TOTAL # OF COMPONENT TYPES REQUIRED FOR ALL RUNS IS:',I4,/,
+ ' COMPONENT TYPES REQUIRED ARE:')
1019 FORMAT ('’ ', 'TOTAL VOLUME OF ALL SEQUENCERS =’ I17,//,
+ ' MAXIMUM LOAD PERMITTED ON ANY SEQUENCER DURING ITS
+FIRST RUN = ' 17,/)
1020 FORMAT ('0’, 'THE NUMBER OF DISPENSING HEADS DEDICATED ON
+ SEQUENCER# °',I1,’ = ' I3,//, ' THE PROPORTION OF DEDICATED HEADS
+ ON SEQUENCER# ', I1,’ = ' F5.3)
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1021 FORNAT ('0’, 'THE TOTAL NUMBER OF COMPONENT TAPE CHANGES
+ REQUIRED BY SEQUENCER# ’',I1,’ TO PRODUCE
+ ALL OF ITS ASSIGNED SEQUENCED TAPES 1IS: ',I3)
1022 FORMAT (’0’, 'THE NUMBER OF COMPONENT TAPES THAT NEED
+ TO BE CHANGED ON’,/,
+' SEQUENCER# ',I1,’' TO PRODUCE RUN# ’ I1,’' = ' ,I3)
1023 FORMAT (’0’, ’'SEQUENCER# ', I1,’ REQUIRES NO COMPONENT TAPE
+ CHANGES SINCE IT I8 ONLY MAKING ONE RUN')
1024 FORNAT ('0’, 'SEQUENCER# ', I1,’ IS MAKING ONLY ONE RUN;',/,
+' THEREFORE, ALL OF ITS DISPENSING HEADS ARE DEDICATED')
c
C CLOSE OUTPUT FILE
CLOSE(UNIT=21)
c
8TOP
9900 END
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END OF MAIN PROGRAM
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PROGRAM SUBROUTINES -
ALL VARIABLES IN THE SUBROUTINES HAVE THE SAME DEFINITION AS IN
THE MAIN PROGRAM

aaaoaoanoaan0aaocoaan

L T I
SUBROUTINE RESULT (INDEX,IM,ITEMP,SMALL,MOST,B)

W T N T T

c

INTEGER INDEX, IM, ITEMP, SMALL, MOST, B

c

INDEX = IN

ITEMP = INDEX

MOST = B - SMALL

c

RETURN

END

c

c SRS ESERESN RN EE R RN S A R LR AL SR SRR SRR AR AR RS RS AR R R RS R AR E ek bk

SUBROUTINE ASSIGN (VOLUME,ORDER,LOAD,SUM,ALCATE,PACK, TRACK)

W T T T Lo
c

INTEGER VOLUME, ORDER, LOAD, SUM, ALCATE, TRACK

LOGICAL PACK

C

ALCATE = 1
PACK = .FALSE.

-

A LA 4
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LOAD = LOAD + VOLUME
TRACK = ORDER
SUN = SUM + 1
c
RETURN
END
c
R L T L T L T TP P PP PP
SUBROUTINE NEXPAC (PACK,DIFFER,SMALL,INDEX, MOST,B,IM)
(T T T L LTy
c
INTEGER DIFFER, SMALL, INDEX, MOST, B, IN
LOGICAL PACK
c
IF(PACK) THEN
IF(DIFFER .LT. SMALL) THEN
INDEX = IM
SMALL = DIFFER
MOST = B - SMALL

=4

ELSE \
IF(DIFFER .EQ. SMALL .AND. (B - SMALL) .GT. NOST) THEN X
INDEX = IN \
MOST = B - SNALL ¥
ENDIF
ENDIF '
ENDIF b
: :
RETURN '
END .
. ,

C Ssxeadtdddddhhbdbhhhbbherrrheh kb bk ke bk kR ke RRERR AR RR AR RR R RS

S8UBROUTINE COMPARE (A,UNION,COTYPE) ;
B T T T T T T Lty I
c ’r
INTEGER A, UNION, COTYPE ;
c :
IF(A .EQ. 1) THEN
UNION = 1
COTYPE = 1
ENDIF
c
RETURN
END
c

c LA AR R A RS R R AR R R RN AR R R R R L e R R R R R R R SRR RS

S8UBROUTINE NEWDIF (COMP, A, UNION, DIFFER)

C 200000000000t t00800ttttttestttsessssttttssstasstnsdsstsstsssetsdssisns
c

INTEGER COMP, A, UNION, DIFFER

c

COMP = A







